Facets of the Total Matching Polytope for bipartite graphs

The Total Matching Polytope generalizes the Stable Set Polytope and the Matching Polytope. In this paper, we give the perfect formulation for Trees and we derive two new families of valid inequalities, the balanced biclique inequalities which are always facet-defining and the non-balanced lifted biclique inequalities obtained by a lifting procedure, which are facet-defining for … Read more

Sparse multi-term disjunctive cuts for the epigraph of a function of binary variables

We propose a new method for separating valid inequalities for the epigraph of a function of binary variables. The proposed inequalities are disjunctive cuts defined by disjunctive terms obtained by enumerating a subset $I$ of the binary variables. We show that by restricting the support of the cut to the same set of variables $I$, … Read more

Exact Methods for Discrete Γ-Robust Interdiction Problems with an Application to the Bilevel Knapsack Problem

Developing solution methods for discrete bilevel problems is known to be a challenging task – even if all parameters of the problem are exactly known. Many real-world applications of bilevel optimization, however, involve data uncertainty. We study discrete min-max problems with a follower who faces uncertainties regarding the parameters of the lower-level problem. Adopting a … Read more

On Polytopes with Linear Rank with respect to Generalizations of the Split Closure

In this paper we study the rank of polytopes contained in the 0-1 cube with respect to $t$-branch split cuts and $t$-dimensional lattice cuts for a fixed positive integer $t$. These inequalities are the same as split cuts when $t=1$ and generalize split cuts when $t > 1$. For polytopes contained in the $n$-dimensional 0-1 … Read more

A decomposition approach for integrated locomotive scheduling and driver rostering in rail freight transport

In this work, we consider the integrated problem of locomotive scheduling and driver rostering in rail freight companies. Our aim is to compute an optimal simultaneous assignment of locomotives and drivers to the trains listed in a given order book. Mathematically, this leads to the combination of a set-packing problem with compatibility constraints and a … Read more

Efficient Joint Object Matching via Linear Programming

Joint object matching, also known as multi-image matching, namely, the problem of finding consistent partial maps among all pairs of objects within a collection, is a crucial task in many areas of computer vision. This problem subsumes bipartite graph matching and graph partitioning as special cases and is NP-hard, in general. We develop scalable linear … Read more

Projective Cutting Planes for General QP with Indicator Constraints

General quadratic optimization problems with linear constraints and additional indicator constraints on the variables are studied. Based on the well-known perspective reformulation for mixed-integer quadratic optimization problems, projective cuts are introduced as new valid inequalities for the general problem. The key idea behind the theory of these cutting planes is the projection of the continuous … Read more

On the Polyhedrality of the Chvatal-Gomory Closure

In this paper, we provide an equivalent condition for the Chvatal-Gomory (CG) closure of a closed convex set to be finitely-generated. Using this result, we are able to prove that, for any closed convex set that can be written as the Minkowski sum of a compact convex set and a closed convex cone, its CG … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Lifting convex inequalities for bipartite bilinear programs

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality that is valid … Read more