Essays on Average Incremental Cost Pricing for Independent System Operators

In a series of essays, we introduce average incremental cost (AIC) pricing and present examples to help understand its advantages. In non-convex markets, AIC pricing is the rough equivalent to marginal cost pricing in convex markets. We present a qualitative comparison of current ISO pricing methods and the AIC approach. We argue that AIC better … Read more

One-Pass Average Incremental Cost Pricing

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not incentive compatible because an auction winner who offered its avoidable costs could lose money at the LMP. ISOs used make-whole payments to ensure market participants did not lose money. Make-whole payments were not public creating transparency issues. Over time, the ISOs employed methods … Read more

Structured Pruning of Neural Networks for Constraints Learning

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies … Read more

Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks

CitationOjha, R., Chen, W., Zhang, H., Khir, R., Erera, A. & Van Hentenryck, P. (2023). Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks.ArticleDownload View PDF

Shattering Inequalities for Learning Optimal Decision Trees

Recently, mixed-integer programming (MIP) techniques have been applied to learn optimal decision trees. Empirical research has shown that optimal trees typically have better out-of-sample performance than heuristic approaches such as CART. However, the underlying MIP formulations often suffer from weak linear programming (LP) relaxations. Many existing MIP approaches employ big-M constraints to ensure observations are … Read more

The set partitioning problem in a quantum context

The set partitioning problem and its decision variant (i.e., the exact cover problem) are combinatorial optimization problems that were historically crucial in the quantum optimization community. This problem is also employed in the main problem of the branch-and-price approach in many real-world optimization problems, including, but not limited to, redistricting and scheduling. Motivated by recent … Read more

Mixed-Integer Programming for a Class of Robust Submodular Maximization Problems

We consider robust submodular maximization problems (RSMs), where given a set of \(m\) monotone submodular objective functions, the robustness is with respect to the worst-case (scaled) objective function. The model we consider generalizes two variants of robust submodular maximization problems in the literature, depending on the choice of the scaling vector. On one hand, by using … Read more

Democratization of Complex-Problem Solving: Toward Privacy-Aware, Transparent and Inclusive Optimization

Critical operations often involve stakeholders with diverse perspectives, yet centralized optimization assumes participation or private information, neither of which is a priori guaranteed. Additionally, decision-making involves discrete decisions, making optimization computationally challenging. Centralized formulations use approximations to manage complexity, often overlooking stakeholder perspectives, leading to bias. To resolve these challenges, we adopt a privacy-aware participatory-distributed … Read more

When Deep Learning Meets Polyhedral Theory: A Survey

In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified … Read more

Mixed-Integer Programming Approaches to Generalized Submodular Optimization and its Applications

Submodularity is an important concept in integer and combinatorial optimization. A classical submodular set function models the utility of selecting homogenous items from a single ground set, and such selections can be represented by binary variables. In practice, many problem contexts involve choosing heterogenous items from more than one ground set or selecting multiple copies … Read more