Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost

The One-Dimensional Cutting Stock Problem with Setup Cost (CSP-S) is a cutting problem that seeks a cutting plan with a minimum number of objects and a minimum number of different patterns. This problem gains relevance in manufacturing settings, where time consuming operations to set up the knives of the cutting machine for the new patterns … Read more

Shattering Inequalities for Learning Optimal Decision Trees

Recently, mixed-integer programming (MIP) techniques have been applied to learn optimal decision trees. Empirical research has shown that optimal trees typically have better out-of-sample performance than heuristic approaches such as CART. However, the underlying MIP formulations often suffer from slow runtimes, due to weak linear programming (LP) relaxations. In this paper, we first propose a … Read more

Recognizing Integrality of Weighted Rectangles Partitions

The weighted rectangles partitioning (WRP) problem is defined on a set of active and inactive pixels. The problem is to find a partition of the active pixels into weighted rectangles, such that the sum of their weights is maximal. The problem is formulated as an integer programming problem and instances with an integral relaxation polyhedron … Read more

Freight-on-Transit for urban last-mile deliveries: A Strategic Planning Approach

We study a delivery strategy for last-mile deliveries in urban areas which combines freight transportation with mass mobility systems with the goal of creating synergies contrasting negative externalities caused by transportation. The idea is to use the residual capacity on public transport means for moving freights within the city. In particular, the system is such … Read more

Sparse multi-term disjunctive cuts for the epigraph of a function of binary variables

We propose a new method for separating valid inequalities for the epigraph of a function of binary variables. The proposed inequalities are disjunctive cuts defined by disjunctive terms obtained by enumerating a subset $I$ of the binary variables. We show that by restricting the support of the cut to the same set of variables $I$, … Read more

Mixed-Integer Optimization with Constraint Learning

We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

Feasible rounding approaches and diving strategies in branch-and-bound methods for mixed-integer optimization

In this paper, we study the behavior of feasible rounding approaches for mixed-integer linear and nonlinear optimization problems (MILP and MINLP, respectively) when integrated into tree search of branch-and-bound. Our research addresses two important aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the main component for feasible rounding approaches, … Read more

EETTlib – Energy-Efficient Train Timetabling Library

We introduce EETTlib, an instance library for the Energy-Efficient Train Timetabling problem. The task in this problem is to adjust a given timetable draft such that several key indicators relating to the energy consumption of the resulting railway traffic are minimized. These include peak power consumption, total energy consumption, loss in recuperation energy, fluctuation in … Read more