A Primal Approach to Facial Reduction for SDP Relaxations of Combinatorial Optimization Problems

We propose a novel facial reduction algorithm tailored to semidefinite programming relaxations of combinatorial optimization problems with quadratic objective functions. Our method leverages the specific structure of these relaxations, particularly the availability of feasible solutions that can often be generated efficiently in practice. By incorporating such solutions into the facial reduction process, we substantially simplify … Read more

Optimal personnel scheduling in hospital pharmacies considering management and operators priorities

In this paper, we address the problem of allocating and scheduling employees for work shifts in the pharmacy sector of a private hospital. To tackle this issue, we introduce the pharmacy staff scheduling problem (PSSP) in the literature. To solve the problem, we propose a mixed-integer programming formulation that considers various aspects, such as the … Read more

A Randomized Algorithm for Sparse PCA based on the Basic SDP Relaxation

Sparse Principal Component Analysis (SPCA) is a fundamental technique for dimensionality reduction, and is NP-hard. In this paper, we introduce a randomized approximation algorithm for SPCA, which is based on the basic SDP relaxation. Our algorithm has an approximation ratio of at most the sparsity constant with high probability, if called enough times. Under a … Read more

Implied Integrality in Mixed-Integer Optimization

Implied-integer detection is a well-known presolving technique that is used by many Mixed-Integer Linear Programming solvers. Informally, a variable is said to be implied integer if its integrality is enforced implicitly by integrality of other variables and the constraints of a problem. In this work we formalize the definition of implied integrality by taking a … Read more

Best-Response Dynamics for Large-Scale Integer Programming Games with Applications to Aquatic Invasive Species Prevention

This paper presents a scalable algorithm for computing the best pure Nash equilibrium (PNE) in large-scale integer programming games (IPGs). While recent advances in IPG algorithms are extensive, existing methods are limited to a small number of players, typically đť‘› = 2, 3. Motivated by a county-level aquatic invasive species (AIS) prevention problem involving 84 … Read more

A Dantzig-Wolfe Single-Level Reformulation for Mixed-Integer Linear Bilevel Optimization: Exact and Heuristic Approaches

Bilevel optimization problems arise in numerous real-world applications. While single-level reformulations are a common strategy for solving convex bilevel problems, such approaches usually fail when the follower’s problem includes integer variables. In this paper, we present the first single-level reformulation for mixed-integer linear bilevel optimization, which does not rely on the follower’s value function. Our … Read more

Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact … Read more

On Multidimensonal Disjunctive Inequalities for Chance-Constrained Stochastic Problems with Finite Support

We consider mixed-integer linear chance-constrained problems for which the random vector that parameterizes the feasible region has finite support. Our key objective is to improve branch-and-bound or -cut approaches by introducing new types of valid inequalities that improve the dual bounds and, by this, the overall performance of such methods. We introduce so-called primal-dual as … Read more

Inverse Optimization via Learning Feasible Regions

We study inverse optimization (IO), where the goal is to use a parametric optimization program as the hypothesis class to infer relationships between input-decision pairs. Most of the literature focuses on learning only the objective function, as learning the constraint function (i.e., feasible regions) leads to nonconvex training programs. Motivated by this, we focus on … Read more

A surplus-maximizing two-sided multi-period non-convex ISO auction market

Since the inception of ISOs, Locational Marginal Prices (LMPs) alone were not market clearing or incentive compatible because an auction winner who offered its avoidable costs could lose money at the LMPs. ISOs used make-whole payments to ensure that market participants did not lose money. Make-whole payments were not public, creating transparency issues. Over time, … Read more