The SCIP Optimization Suite 5.0

This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 % faster than SCIP 4.0 and over … Read more

Load Scheduling for Residential Demand Response on Smart Grids

The residential load scheduling problem is concerned with finding an optimal schedule for the operation of residential loads so as to minimize the total cost of energy while aiming to respect a prescribed limit on the power level of the residence. We propose a mixed integer linear programming formulation of this problem that accounts for … Read more

A decentralized framework for the optimal coordination of distributed energy resources

Demand-response aggregators are faced with the challenge of how to best manage numerous and heterogeneous Distributed Energy Resources (DERs). This paper proposes a decentralized methodology for optimal coordination of DERs. The proposed approach is based on Dantzig-Wolfe decomposition and column generation, thus allowing to integrate any type of resource whose operation can be formulated within … Read more

Conflict Driven Diving for Mixed Integer Programming

The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short … Read more

A feasible rounding approach for mixed-integer optimization problems

We introduce granularity as a sufficient condition for the consistency of a mixed-integer optimization problem, and show how to exploit it for the computation of feasible points: For optimization problems which are granular, solving certain linear problems and rounding their optimal points always leads to feasible points of the original mixed-integer problem. Thus, the resulting … Read more

MILP feasibility by nonlinear programming

We discuss a tightly feasible mixed-integer linear programs arising in the energy industry, for which branch-and-bound appears to be ineffective. We consider its hardness, measure the probability that randomly generated instances are feasible or almost feasible, and introduce heuristic solution methods based on relaxing different constraints of the problem. We show the computational efficiency of … Read more

Algorithms for the One-Dimensional Two-Stage Cutting Stock Problem

In this paper, we consider the two-stage extension of the one-dimensional cutting stock problem which arises when technical requirements inhibit the cutting of large stock rolls to demanded widths of finished rolls directly. Therefore, the demands on finished rolls are fulfilled through two subsequent cutting processes, in which the rolls produced in the former are … Read more

Approximation algorithms for the covering-type k-violation linear program

We study the covering-type k-violation linear program where at most $k$ of the constraints can be violated. This problem is formulated as a mixed integer program and known to be strongly NP-hard. In this paper, we present a simple (k+1)-approximation algorithm using a natural LP relaxation. We also show that the integrality gap of the … Read more

The Inmate Assignment and Scheduling Problem and its Application in the PA Department of Correction

The inmate assignment project, in close collaboration with the Pennsylvania Department of Corrections (PADoC), took five years from start to successful implementation. In this project, we developed the Inmate Assignment Decision Support System (IADSS), where the primary goal is simultaneous and system-wide optimal assignment of inmates to correctional institutions (CIs). We develop a novel hier- … Read more

Best subset selection of factors affecting influenza spread using bi-objective optimization

A typical approach for computing an optimal strategy for non-pharmaceutical interventions during an influenza outbreak is based on statistical ANOVA. In this study, for the first time, we propose to use bi-objective mixed integer linear programming. Our approach employs an existing agent-based simulation model and statistical design of experiments presented in Martinez and Das (2014) … Read more