Lagrangian Duality for Mixed-Integer Semidefinite Programming: Theory and Algorithms

This paper presents the Lagrangian duality theory for mixed-integer semidefinite programming (MISDP). We derive the Lagrangian dual problem and prove that the resulting Lagrangian dual bound dominates the bound obtained from the continuous relaxation of the MISDP problem. We present a hierarchy of Lagrangian dual bounds by exploiting the theory of integer positive semidefinite matrices … Read more

Proximity results in convex mixed-integer programming

We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp. optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms of the recession cone of the feasible region of … Read more

Mixed-Integer Bilevel Optimization with Nonconvex Quadratic Lower-Level Problems: Complexity and a Solution Method

We study bilevel problems with a convex quadratic mixed-integer upper-level and a nonconvex quadratic, purely continuous lower-level problem. We prove $\Sigma_p^2$-hardness of this class of problems, derive an iterative lower- and upper-bounding scheme, and show its finiteness and correctness in the sense that it computes globally optimal points or proves infeasibility of the instance. To … Read more

A Branch-and-Price-and-Cut Algorithm for Discrete Network Design Problems Under Traffic Equilibrium

This study addresses discrete network design problems under traffic equilibrium conditions or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such as link addition to minimize network congestion effects. Congestion is measured using traffic equilibrium theory where link travel times are modeled as convex flow-dependent functions and where users make … Read more

Unboundedness in Bilevel Optimization

Bilevel optimization has garnered growing interest over the past decade. However, little attention has been paid to detecting and dealing with unboundedness in these problems, with most research assuming a bounded high-point relaxation. In this paper, we address unboundedness in bilevel optimization by studying its computational complexity and developing algorithmic approaches to detect it. We … Read more

Sparse Principal Component Analysis with Non-Oblivious Adversarial Perturbations

Sparse Principal Component Analysis (sparse PCA) is a fundamental dimension-reduction tool that enhances interpretability in various high-dimensional settings. An important variant of sparse PCA studies the scenario when samples are adversarially perturbed. Notably, most existing statistical studies on this variant focus on recovering the ground truth and verifying the robustness of classical algorithms when the … Read more

Generator Subadditive Functions for Mixed-Integer Programs

For equality-constrained linear mixed-integer programs (MIP) defined by rational data, it is known that the subadditive dual is a strong dual and that there exists an optimal solution of a particular form, termed generator subadditive function. Motivated by these results, we explore the connection between Lagrangian duality, subadditive duality and generator subadditive functions for general … Read more

Missing Value Imputation via Mathematical Optimization with Instance-and-Feature Neighborhoods

Datasets collected for analysis often contain a certain amount of incomplete instances, where some feature values are missing. Since many statistical analyses and machine learning algorithms depend on complete datasets, missing values need to be imputed in advance. Bertsimas et al. (2018) proposed a high-performance method that combines machine learning and mathematical optimization algorithms for … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

A graphical framework for global optimization of mixed-integer nonlinear programs

While mixed-integer linear programming and convex programming solvers have advanced significantly over the past several decades, solution technologies for general mixed-integer nonlinear programs (MINLPs) have yet to reach the same level of maturity. Various problem structures across different application domains remain challenging to model and solve using modern global solvers, primarily due to the lack … Read more