Branch and price for nonlinear production-maintenance scheduling in complex machinery

This paper proposes a mixed-integer nonlinear programming approach for joint scheduling of long-term maintenance decisions and short-term production for groups of complex machines with multiple interacting components. We introduce an abstract model where the production and the condition of machines are described by convex functions, allowing the model to be employed for various application areas … Read more

Towards a geometric characterization of unbounded integer cubic optimization problems via thin rays

We study geometric characterizations of unbounded integer polynomial optimization problems. While unboundedness along a ray fully characterizes unbounded integer linear and quadratic optimization problems, we show that this is not the case for cubic polynomials. To overcome this, we introduce thin rays, which are rays with an arbitrarily small neighborhood, and prove that they characterize … Read more

Projection-width: a unifying structural parameter for separable discrete optimization

We introduce the notion of projection-width for systems of separable constraints, defined via branch decompositions of variables and constraints. We show that several fundamental discrete optimization and counting problems can be solved in polynomial time when the projection-width is polynomially bounded. These include optimization, counting, top-k, and weighted constraint violation. Our results identify a broad … Read more

Branch-and-Cut for Computing Approximate Equilibria of Mixed-Integer Generalized Nash Games

Generalized Nash equilibrium problems with mixed-integer variables constitute an important class of games in which each player solves a mixed-integer optimization problem, where both the objective and the feasible set is parameterized by the rivals’ strategies. However, such games are known for failing to admit exact equilibria and also the assumption of all players being … Read more

On the Convexification of a Class of Mixed-Integer Conic Sets

We investigate mixed-integer second-order conic (SOC) sets with a nonlinear right-hand side in the SOC constraint, a structure frequently arising in mixed-integer quadratically constrained programming (MIQCP). Under mild assumptions, we show that the convex hull can be exactly described by replacing the right-hand side with its concave envelope. This characterization enables strong relaxations for MIQCPs … Read more

Extreme Strong Branching for QCQPs

For mixed-integer programs (MIPs), strong branching is a highly effective variable selection method to reduce the number of nodes in the branch-and-bound algorithm. Extending it to nonlinear problems is conceptually simple but practically limited. Branching on a binary variable fixes the variable to 0 or 1, whereas branching on a continuous variable requires an additional … Read more

Isotonic Optimization with Fixed Costs

This paper introduces a generalized isotonic optimization framework over an arborescence graph, where each node incurs state-dependent convex costs and a fixed cost upon strict increases. We begin with the special case in which the arborescence is a path and develop a dynamic programming (DP) algorithm with an initial complexity of $O(n^3)$, which we improve … Read more

A second-order cone representable class of nonconvex quadratic programs

We consider the problem of minimizing a sparse nonconvex quadratic function over the unit hypercube. By developing an extension of the Reformulation Linearization Technique (RLT) to continuous quadratic sets, we propose a novel second-order cone (SOC) representable relaxation for this problem. By exploiting the sparsity of the quadratic function, we establish a sufficient condition under … Read more

Solving MINLPs to global optimality with FICO Xpress Global

We present the architecture and central parts of the FICO Xpress Global optimization solver. In particular, we focus on how we built a global solver for the general class of mixed-integer nonlinear optimization problems by combining and extending two existing components of the FICO Xpress Solver, namely the mixed-integer linear optimization solver and the successive … Read more