Sparse and Smooth Signal Estimation: Convexification of L0 Formulations

Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with L0-“norm” constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on L1-norm relaxations. In this paper, we propose new iterative conic quadratic relaxations that exploit not only the L0-“norm” … Read more

Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks

Semidefinite programming relaxations complement polyhedral relaxations for quadratic optimization, but global optimization solvers built on polyhedral relaxations cannot fully exploit this advantage. This paper develops linear outer-approximations of semidefinite constraints that can be effectively integrated into global solvers. The difference from previous work is that our proposed cuts are (i) sparser with respect to the … Read more

Compact Disjunctive Approximations to Nonconvex Quadratically Constrained Programs

Decades of advances in mixed-integer linear programming (MILP) and recent development in mixed-integer second-order-cone programming (MISOCP) have translated very mildly to progresses in global solving nonconvex mixed-integer quadratically constrained programs (MIQCP). In this paper we propose a new approach, namely Compact Disjunctive Approximation (CDA), to approximate nonconvex MIQCP to arbitrary precision by convex MIQCPs, which … Read more

Submodularity and valid inequalities in nonlinear optimization with indicator variables

We propose a new class of valid inequalities for mixed-integer nonlinear optimization problems with indicator variables. The inequalities are obtained by lifting polymatroid inequalities in the space of the 0–1 variables into conic inequalities in the original space of variables. The proposed inequalities are shown to describe the convex hull of the set under study … Read more

A new combinatorial algorithm for separable convex resource allocation with nested bound constraints

The separable convex resource allocation problem with nested bound constraints aims to allocate $B$ units of resources to $n$ activities to minimize a separable convex cost function, with lower and upper bounds on the total amount of resources that can be consumed by nested subsets of activities. We develop a new combinatorial algorithm to solve … Read more

A convex integer programming approach for optimal sparse PCA

Principal component analysis (PCA) is one of the most widely used dimensionality reduction tools in scientific data analysis. The PCA direction, given by the leading eigenvector of a covariance matrix, is a linear combination of all features with nonzero loadings—this impedes interpretability. Sparse principal component analysis (SPCA) is a framework that enhances interpretability by incorporating … Read more

Endogenous Price Zones and Investment Incentives in Electricity Markets: An Application of Multilevel Optimization with Graph Partitioning

In the course of the energy transition, load and supply centers are growing apart in electricity markets worldwide, rendering regional price signals even more important to provide adequate locational investment incentives. This paper focuses on electricity markets that operate under a zonal pricing market design. For a fixed number of zones, we endogenously derive the … Read more

Resilient layout, design and operation of energy-efficient water distribution networks for high-rise buildings using MINLP

Water supply of high-rise buildings requires pump systems to ensure pressure requirements. The design goal of these systems are energy and cost efficiency, both in terms of fixed cost as well as during operation. In this paper, cost optimal decentralized and tree-shaped water distribution networks are computed, where placements of pumps at different locations in … Read more

A Branch-and-Cut Algorithm for Solving Mixed-integer Semidefinite Optimization Problems

This paper is concerned with a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite constraint is relaxed, and the resultant mixed-integer linear optimization problem is repeatedly solved with valid inequalities for the relaxed constraint. We prove convergence properties of the algorithm. Moreover, to speed up the computation, we … Read more

On robust fractional 0-1 programming

We study single- and multiple-ratio robust fractional 0-1 programming problems (RFPs). In particular, this work considers RFPs under a wide-range of disjoint and joint uncertainty sets, where the former implies separate uncertainty sets for each numerator and denominator, and the latter accounts for different forms of inter-relatedness between them. First, we demonstrate that, unlike the … Read more