Deriving the convex hull of a polynomial partitioning set through lifting and projection

Relaxations of the bilinear term, $x_1x_2=x_3$, play a central role in constructing relaxations of factorable functions. This is because they can be used directly to relax products of functions with known relaxations. In this paper, we provide a compact, closed-form description of the convex hull of this and other more general bivariate monomial terms (which … Read more

Subset Selection by Mallows’ Cp: A Mixed Integer Programming Approach

This paper concerns a method of selecting the best subset of explanatory variables for a linear regression model. Employing Mallows’ C_p as a goodness-of-fit measure, we formulate the subset selection problem as a mixed integer quadratic programming problem. Computational results demonstrate that our method provides the best subset of variables in a few seconds when … Read more

Cutting Planes for RLT Relaxations of Mixed 0-1 Polynomial Programs

The Reformulation-Linearization Technique (RLT), due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0-1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the … Read more

A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management

We study the problem of integrated staffing and scheduling under demand uncertainty. The problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. The here-and-now decision is to find initial staffing levels and schedules, well ahead in time. The wait-and-see decision is to adjust these schedules at a time epoch closer to the … Read more

Active Set Methods with Reoptimization for Convex Quadratic Integer Programming

We present a fast branch-and-bound algorithm for solving convex quadratic integer programs with few linear constraints. In each node, we solve the dual problem of the continuous relaxation using an infeasible active set method proposed by Kunisch and Rendl to get a lower bound; this active set algorithm is well suited for reoptimization. Our algorithm … Read more

Approximation of the Quadratic Knapsack Problem

We study the approximability of the classical quadratic knapsack problem (QKP) on special graph classes. In this case the quadratic terms of the objective function are not given for each pair of knapsack items. Instead an edge weighted graph G = (V,E) whose vertices represent the knapsack items induces a quadratic profit p_ij for the … Read more

Memory-Aware Parallelized RLT3 for Solving Quadratic Assignment Problems

We present a coarse-grain (outer-loop) parallel implementation of RLT1/2/3 (Level 1, 2, and 3 Reformulation and Linearization Technique—in that order) bound calculations for the QAP within a branch-and-bound procedure. For a search tree node of size S, each RLT3 and RLT2 bound calculation iteration is parallelized S ways, with each of S processors performing O(S5) … Read more

Monomial-wise Optimal Separable Underestimators for Mixed-Integer Polynomial Optimization

In this paper we introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches … Read more

Efficient upper and lower bounds for global mixed-integer optimal control

We present a control problem for an electrical vehicle. Its motor can be operated in two discrete modes, leading either to acceleration and energy consumption, or to a recharging of the battery. Mathematically, this leads to a mixed-integer optimal control problem (MIOCP) with a discrete feasible set for the controls taking into account the electrical … Read more

Mathematical Programming: Turing completeness and applications to software analysis

Mathematical Programming is Turing complete, and can be used as a general-purpose declarative language. We present a new constructive proof of this fact, and showcase its usefulness by discussing an application to finding the hardest input of any given program running on a Minsky Register Machine. We also discuss an application of Mathematical Programming to … Read more