Satisficing Models under Uncertainty

Satisficing, as an approach to decision-making under uncertainty, aims at achieving solutions that satisfy the problem’s constraints as well as possible. Mathematical optimization problems that are related to this form of decision-making include the P-model of Charnes and Cooper (1963). In this paper, we propose a general framework of satisficing decision criteria, and show a … Read more

Online Learning for Strong Branching Approximation in Branch-and-Bound

We present an online learning approach to variable branching in branch-and-bound for mixed-integer linear problems. Our approach consists in learning strong branching scores in an online fashion and in using them to take branching decisions. More specifically, numerical scores are used to rank the branching candidates. If, for a given variable, the learned approximation is … Read more

The Vehicle Routing Problem with Occasional Drivers

We consider a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries, but may also use the services of occasional drivers who are willing to make a single delivery using their own vehicle in return for a small compensation if the delivery location is not … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Analysis of Sparse Cutting-plane for Sparse MILPs with Applications to Stochastic MILPs

In this paper, we present an analysis of the strength of sparse cutting-planes for mixed integer linear programs (MILP) with sparse formulations. We examine three kinds of problems: packing problems, covering problems, and more general MILPs with the only assumption that the objective function is non-negative. Given a MILP instance of one of these three … Read more

PIPS-SBB: A parallel distributed-memory branch-and-bound algorithm for stochastic mixed-integer programs

Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. To overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels … Read more

Convex Hull Characterizations of Lexicographic Orderings

Given a p-dimensional nonnegative, integral vector α, this paper characterizes the convex hull of the set S of nonnegative, integral vectors x that is lexicographically less than or equal to α. To obtain a finite number of elements in S, the vectors x are restricted to be component-wise upper-bounded by an integral vector u. We … Read more

On the Polyhedral Structure of Two-Level Lot-Sizing Problems with Supplier Selection

In this paper, we study a two-level lot-sizing problem with supplier selection (LSS). This NP-hard problem arises in different production planning and supply chain management applications. We first present a dynamic programming algorithm for LSS that is polynomial when the number of plants is fixed. We use this algorithm to describe the convex hull of … Read more

Robust Nonparametric Testing for Causal Inference in Observational Studies

We consider the decision problem of making causal conclusions from observational data. Typically, using standard matched pairs techniques, there is a source of uncertainty that is not usually quanti fied, namely the uncertainty due to the choice of the experimenter: two di fferent reasonable experimenters can easily have opposite results. In this work we present an alternative … Read more

Column Generation based Alternating Direction Methods for solving MINLPs

Traditional decomposition based branch-and-bound algorithms, like branch-and-price, can be very efficient if the duality gap is not too large. However, if this is not the case, the branch-and-bound tree may grow rapidly, preventing the method to find a good solution. In this paper, we present a new decompositon algorithm, called ADGO (Alternating Direction Global Optimization … Read more