Optimal Installation for Electric Vehicle Wireless Charging Lanes

Range anxiety, the persistent worry about not having enough battery power to complete a trip, remains one of the major obstacles to widespread electric-vehicle adoption. As cities look to attract more users to adopt electric vehicles, the emergence of wireless in-motion car charging technology presents itself as a solution to range anxiety. For a limited … Read more

Error bounds for monomial convexification in polynomial optimization

Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of $[0,1]^n$. This … Read more

Location of charging stations in electric car sharing systems

Electric vehicles are a prime candidate for use within an urban car sharing system, both from an economic and environmental perspective. However, their relatively short range necessitates frequent and rather time-consuming recharging throughout the day. Thus, charging stations must be built throughout the system’s operational area where cars can be charged between uses. In this … Read more

Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand

In this article, we introduce and study a two-stage stochastic optimization problem suitable to solve strategic optimization problems of car-sharing systems that utilize electric cars. By combining the individual advantages of car-sharing and electric vehicles, such electric car-sharing systems may help to overcome future challenges related to pollution, congestion, or shortage of fossil fuels. A … Read more

Co-optimization of Demand Response and Reserve Offers for a Major Consumer

In this paper we present a stochastic optimization problem for a strategic major consumer who has flexibility over its consumption and can offer reserve. Our model is a bi-level optimization model (reformulated as a mixed-integer program) that embeds the optimal power flow problem, in which electricity and reserve are co-optimized. We implement this model for … Read more

A hybrid approach for Bi-Objective Optimization

A large number of the real world planning problems which are today solved using Operations Research methods are actually multi-objective planning problems, but most of them are solved using single-objective methods. The reason for converting, i.e. simplifying, multi- objective problems to single-objective problems is that no standard multi-objective solvers exist and specialized algorithms need to … Read more

Dantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case

The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. We show that … Read more

Random Sampling and Machine Learning to Understand Good Decompositions

Motivated by its implications in the development of general purpose solvers for decomposable Mixed Integer Programs (MIP), we address a fundamental research question, that is to assess if good decomposition patterns can be consistently found by looking only at static properties of MIP input instances, or not. We adopt a data driven approach, devising a … Read more

Complex Number Formulation and Convex Relaxations for Aircraft Conflict Resolution

We present a novel complex number formulation along with tight convex relaxations for the aircraft conflict resolution problem. Our approach combines both speed and heading control and provides global optimality guarantees despite non-convexities in the feasible region. As a side result, we present a new characterization of the conflict separation condition in the form of … Read more

Packing circles in a square: a theoretical comparison of various convexification techniques

We consider the problem of packing congruent circles with the maximum radius in a unit square. As a mathematical program, this problem is a notoriously difficult nonconvex quadratically constrained optimization problem which possesses a large number of local optima. We study several convexification techniques for the circle packing problem, including polyhedral and semi-definite relaxations and … Read more