DC programming approach for solving a class of bilevel partial facility interdiction problems

We propose a new approach based DC programming for fnding a solution of the partial facility interdiction problem that belongs to the class of bilevel programming. This model was frst considered in the work of Aksen et al. [1] with a heuristic algorithm named multi-start simplex search (MSS). However, because of the big number of … Read more

Mean–variance portfolio optimization with shrinkage estimation for recommender systems

This paper is concerned with a mean-variance portfolio optimization model with cardinality constraint for generating high-quality lists of recommendations. It is usually difficult to accurately estimate the rating covariance matrix required for mean-variance portfolio optimization because of a shortage of observed user ratings. To improve the accuracy of covariance matrix estimation, we apply shrinkage estimation … Read more

Solving the Traveling Telescope Problem with Mixed Integer Linear Programming

The size and complexity of modern astronomical surveys has grown to the point where, in many cases, traditional human scheduling of observations is tedious at best and impractical at worst. Automated scheduling algorithms present an opportunity to save human effort and increase scientific productivity. A common scheduling challenge involves determining the optimal ordering of a … Read more

An enhanced mathematical model for optimal simultaneous preventive maintenance scheduling and workshop planning

For a system to stay operational, maintenance of its components is required and to maximize the operational readiness of a system, preventive maintenance planning is essential. There are two stakeholders—a system operator and a maintenance workshop—and a contract regulating their joint activities. Each contract leads to a bi-objective optimization problem. Components that require maintenance are … Read more

Using Column Generation in Column-and-Constraint Generation for Adjustable Robust Optimization

Adjustable robust optimization (ARO) is a powerful tool to model problems that have uncertain data and that feature a two-stage decision making process. Computationally, they are often addressed using the column-and-constraint generation (CCG) algorithm introduced by Zhao and Zeng in 2012. While it was empirically shown that the algorithm scales well if all second-stage decisions … Read more

On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, … Read more

Strengthened MIP Formulations for the Liver Region Redesign Models of Akshat et al.

Liver transplantation has been a critical issue in the U.S. healthcare system for decades, and the region redesign aims to ameliorate this issue. This paper revisits two mixed integer programming (MIP) formulations of the liver region redesign problem proposed by Akshat et al. We study their first formulation considering two different modeling approaches: one compact … Read more

A Computational Study for Piecewise Linear Relaxations of Mixed-Integer Nonlinear Programs

Solving mixed-integer nonlinear problems by means of piecewise linear relaxations can be a reasonable alternative to the commonly used spatial branch-and-bound. These relaxations have been modeled by various mixed-integer models in recent decades. The idea is to exploit the availability of mature solvers for mixed-integer problems. In this work, we compare different reformulations in terms … Read more

Solving Hard Bi-objective Knapsack Problems Using Deep Reinforcement Learning

We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs). Our research focuses on the development of innovative exact and approximate solution methods for BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer programming and (deep) reinforcement learning. While novel reinforcement learning techniques have been applied successfully to single-objective … Read more

A novel Pareto-optimal cut selection strategy for Benders Decomposition

Decomposition methods can be used to create efficient solution algorithms for a wide range of optimization problems. For example, Benders Decomposition can be used to solve scenario-expanded two-stage stochastic optimization problems effectively. Benders Decomposition iteratively generates Benders cuts by solving a simplified version of an optimization problem, the so-called subproblem. The choice of the generated … Read more