Exploiting total unimodularity for classes of random network problems

Network analysis is of great interest for the study of social, biological and technological networks, with applications, among others, in business, marketing, epidemiology and telecommunications. Researchers are often interested in assessing whether an observed feature in some particular network is expected to be found within families of networks under some hypothesis (named conditional random networks, … Read more

A scenario decomposition algorithm for 0-1 stochastic programs

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and … Read more

On the Separation of Split Inequalities for Non-Convex Quadratic Integer Programming

We investigate the computational potential of split inequalities for non-convex quadratic integer programming, first introduced by Letchford and further examined by Burer and Letchford. These inequalities can be separated by solving convex quadratic integer minimization problems. For small instances with box-constraints, we show that the resulting dual bounds are very tight; they can close a … Read more

A Unified View on Relaxations for a Nonlinear Network Flow Problem

We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides … Read more

A branch and cut algorithm for minimum spanning trees under conflict constraints

We study approaches for the exact solution of the \NP–hard minimum spanning tree problem under conflict constraints. Given a graph $G(V,E)$ and a set $C \subset E \times E$ of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the … Read more

Extended Linear Formulation for Binary Quadratic Problems

In this work we propose and test a new linearisation technique for Binary Quadratic Problems (BQP). We computationally prove that the new formulation, called Extended Linear Formulation, performs much better than the standard one in practice, despite not being stronger in terms of Linear Programming relaxation (LP). We empirically prove that this behaviour is due … Read more

On Minimal Valid Inequalities for Mixed Integer Conic Programs

We study mixed integer conic sets involving a general regular (closed, convex, full dimensional, and pointed) cone K such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In a unified framework, we introduce K-minimal inequalities and show that under mild assumptions, these inequalities together with the trivial cone-implied inequalities are sufficient … Read more

Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs

We study a class of two-stage stochastic integer programs with general integer variables in both stages and finitely many realizations of the uncertain parameters. Based on Benders’ method, we propose a decomposition algorithm that utilizes Gomory cuts in both stages. The Gomory cuts for the second-stage scenario subproblems are parameterized by the first-stage decision variables, … Read more

Mixed Integer Second-Order Cone Programming Formulations for Variable Selection

This paper concerns the method of selecting the best subset of explanatory variables in a multiple linear regression model. To evaluate a subset regression model, some goodness-of-fit measures, e.g., adjusted R^2, AIC and BIC, are generally employed. Although variable selection is usually handled via a stepwise regression method, the method does not always provide the … Read more

Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems

Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately, the second property is usually lost when the cost function that needs to be robustified is not concave … Read more