Intersection Cuts for Mixed Integer Conic Quadratic Sets

Balas introduced intersection cuts for mixed integer linear sets. Intersection cuts are given by closed form formulas and form an important class of cuts for solving mixed integer linear programs. In this paper we introduce an extension of intersection cuts to mixed integer conic quadratic sets. We identify the formula for the conic quadratic intersection … Read more

Exact algorithms for the Traveling Salesman Problem with Draft Limits

This paper deals with the Traveling Salesman Problem (TSP) with Draft Limits (TSPDL), which is a variant of the well-known TSP in the context of maritime transportation. In this recently proposed problem, draft limits are imposed due to restrictions on the port infrastructures. Exact algorithms based on three mathematical formulations are proposed and their performance … Read more

On the Rank of Cutting-Plane Proof Systems

We introduce a natural abstraction of propositional proof systems that are based on cut- ting planes. This leads to a new class of proof systems that includes many well-known meth- ods, such as Gomory-Chvátal cuts, lift-and-project cuts, Sherali-Adams cuts, or split cuts. The rank of a proof system corresponds to the number of rounds that … Read more

A NOTE ON THE EXTENSION COMPLEXITY OF THE KNAPSACK POLYTOPE

We show that there are 0-1 and unbounded knapsack polytopes with super-polynomial extension complexity. More specifically, for each n in N we exhibit 0-1 and unbounded knapsack polyhedra in dimension n with extension complexity \Omega(2^\sqrt{n}). Article Download View A NOTE ON THE EXTENSION COMPLEXITY OF THE KNAPSACK POLYTOPE

A New Class of Valid Inequalities for Nonlinear Network Design Problems

We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow … Read more

Traveling Salesman Problem Formulations with \log N$ Number of Binary Variables

Abstract This paper presents a novel formulation for the Traveling Salesman Problem (TSP), utilizing a binary list data-structure allocating cities to its leaves to form sequentially the tour of the problem. The structure allows the elimination of subtours from the formulation and at the same time reducing the number of binary variables to ${\cal O}(N\log_{2}N)$. … Read more

A big bucket time indexed formulation for nonpreemptive single machine scheduling problems

A big bucket time indexed mixed integer linear programming formulation for nonpreemptive single machine scheduling problems is presented in which the length of each period can be as large as the processing time of the shortest job. The model generalises the classical time indexed model to one in which at most two jobs can be … Read more

Intersection Cuts for Nonlinear Integer Programming: Convexification Techniques for Structured Sets

We study the generalization of split, k-branch split, and intersection cuts from Mixed Integer Linear Programming to the realm of Mixed Integer Nonlinear Programming. Constructing such cuts requires calculating the convex hull of the difference between a convex set and an open set with a simple geometric structure. We introduce two techniques to give precise … Read more

Equivalence of an Approximate Linear Programming Bound with the Held-Karp Bound for the Traveling Salesman Problem

We consider two linear relaxations of the asymmetric traveling salesman problem (TSP), the Held-Karp relaxation of the TSP’s arc-based formulation, and a particular approximate linear programming (ALP) relaxation obtained by restricting the dual of the TSP’s shortest path formulation. We show that the two formulations produce equal lower bounds for the TSP’s optimal cost regardless … Read more

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same … Read more