Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem

We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson’s infinite group problem, that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically, for deciding extremality in this important class of minimal valid functions. Article … Read more

Aircraft deconfliction with speed regulation: new models from mixed-integer optimization

Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic Management. We focus on mixed-integer optimization models based on speed regulation. We first solve the problem to global optimality by means of an exact … Read more

A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization

We study the convex hull of the intersection of a convex set E and a linear disjunction. This intersection is at the core of solution techniques for Mixed Integer Conic Optimization. We prove that if there exists a cone K (resp., a cylinder C) that has the same intersection with the boundary of the disjunction … Read more

An Exact Algorithm for Quadratic Integer Minimization using Ellipsoidal Relaxations

We propose a branch-and-bound algorithm for minimizing a not necessarily convex quadratic function over integer variables. The algorithm is based on lower bounds computed as continuous minima of the objective function over appropriate ellipsoids. In the nonconvex case, we use ellipsoids enclosing the feasible region of the problem. In spite of the nonconvexity, these minima … Read more

Sparse Approximation via Penalty Decomposition Methods

In this paper we consider sparse approximation problems, that is, general $l_0$ minimization problems with the $l_0$-“norm” of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of … Read more

Covering Linear Programming with Violations

We consider a class of linear programs involving a set of covering constraints of which at most k are allowed to be violated. We show that this covering linear program with violation is strongly NP-hard. In order to improve the performance of mixed-integer programming (MIP) based schemes for these problems, we introduce and analyze a … Read more

On Traveling Salesman Games with Asymmetric Costs

We consider cooperative traveling salesman games with non-negative asymmetric costs satisfying the triangle inequality. We construct a stable cost allocation with budget balance guarantee equal to the Held-Karp integrality gap for the asymmetric traveling salesman problem, using the parsimonious property and a previously unknown connection to linear production games. We also show that our techniques … Read more

Global Optimization of Nonlinear Network Design

A novel approach for obtaining globally optimal solutions to design of networks with nonlinear resistances and potential driven flows is proposed. The approach is applicable to networks where the potential loss on an edge in the network is governed by a convex and strictly monotonically increasing function of flow rate. We introduce a relaxation of … Read more

An Alternating Direction Method for Chance-Constrained Optimization Problems with Discrete Distributions

We consider a chance-constrained optimization problem (CCOP), where the random variables follow finite discrete distributions. The problem is in general nonconvex and can be reformulated as a mixed-integer program. By exploiting the special structure of the probabilistic constraint, we propose an alternating direction method for finding suboptimal solutions of CCOP. At each iteration, this method … Read more