n-step Conic Mixed Integer Rounding Inequalities

We introduce the n-step conic MIR inequalities for the so-called polyhedral second-order conic (PSOC) mixed integer sets. PSOC sets arise in the polyhedral reformulation of the second-order conic mixed integer programs. Moreover, they are an equivalent representation for any mixed integer set defined by two linear constraints. The simple conic MIR inequalities of Atamtürk and … Read more

On t-branch split cuts for mixed-integer programs

In this paper we study the t-branch split cuts introduced by Li and Richard (2008). They presented a family of mixed-integer programs with n integer variables and a single continuous variable and conjectured that the convex hull of integer solutions for any n has unbounded rank with respect to (n-1)-branch split cuts. It was shown … Read more

The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, … Read more

Optimal Toll Design: A Lower Bound Framework for the Asymmetric Traveling Salesman Problem

We propose a framework of lower bounds for the asymmetric traveling salesman problem (TSP) based on approximating the dynamic programming formulation with diff erent basis vector sets. We discuss how several well-known TSP lower bounds correspond to intuitive basis vector choices and give an economic interpretation wherein the salesman must pay tolls as he travels between … Read more

How tight is the corner relaxation? Insights gained from the stable set problem

The corner relaxation of a mixed-integer linear program is a central concept in cutting plane theory. In a recent paper Fischetti and Monaci provide an empirical assessment of the strength of the corner and other related relaxations on benchmark problems. In this paper we give a precise characterization of the bounds given by these relaxations … Read more

Improved Bounds for Large Scale Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) stands among the hardest combinatorial problems to solve or to find high quality solutions. This becomes even more true when dealing with large instances. This paper investigates methods to improve on lower and upper bounds of instances on graphs with over two hundred vertices and three hundred edges, dimensions … Read more

Derivative-free methods for constrained mixed-integer optimization

We consider the problem of minimizing a continuously di erentiable function of several variables subject to simple bound and general nonlinear inequality constraints, where some of the variables are restricted to take integer values. We assume that the rst order derivatives of the objective and constraint functions can be neither calculated nor approximated explicitly. This class … Read more

More Branch-and-Bound Experiments in Convex Nonlinear Integer Programming

Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) problems. It is well-known that carrying out branching in a non-simplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Programming (MILP). No detailed study of branching has heretofore been carried out … Read more

Interdiction Branching

This paper introduces interdiction branching, a new branching method for binary integer programs that is designed to overcome the difficulties encountered in solving problems for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes into account the best feasible solution found so far. In particular, the … Read more

Mixed n-Step MIR Inequalities: Facets for the n-Mixing Set

Gunluk and Pochet [O. Gunluk, Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set $\{(y^1,\ldots,y^m,v) \in Z^m \times R_+:\alpha_1 y^i + v \geq \b_i,i=1,\ldots,m\}$ and can also be used to generate valid … Read more