A Computational Study of Exact Knapsack Separation for the Generalized Assignment Problem

The Generalized Assignment Problem is a well-known NP-hard combinatorial optimization problem which consists of minimizing the assignment costs a set of jobs to a set of machines satisfying capacity constraints. Most of the existing algorithms are based on Branch-and-Price, with lower bounds computed by Dantzig-Wolfe reformulation and column generation. In this paper we propose a … Read more

On the solution of stochastic multiobjective integer linear programming problems with a parametric study

In this study we consider a multiobjective integer linear stochastic programming problem with individual chance constraints. We assume that there is randomness in the right-hand sides of the constraints only and that the random variables are normally distributed. Some stability notions for such problem are characterized. An auxiliary problem is discussed and an algorithm as … Read more

Optimizing Highway Transportation at the United States Postal Service

The United States Postal Service (USPS) delivers more than 200 billion items per year. Transporting these items in a timely and cost-efficient way is a key issue if USPS is to meet its service and financial goals. The Highway Corridor Analytic Program (HCAP) is a tool that aids transportation analysts in identifying cost saving opportunities … Read more

A Persistency Model and Its Applications in Choice Modeling

Given a discrete optimization problem $Z(\mb{\tilde{c}})=\max\{\mb{\tilde{c}}’\mb{x}:\mb{x}\in \mathcal{X}\}$, with objective coefficients $\mb{\tilde{c}}$ chosen randomly from a distribution ${\mathcal{\theta}}$, we would like to evaluate the expected value $E_\theta(Z(\mb{\tilde{c}}))$ and the probability $P_{\mathcal{\theta}}(x^*_i(\mb{\tilde{c}})=k)$ where $x^*(\mb{\tilde{c}})$ is an optimal solution to $Z(\mb{\tilde{c}})$. We call this the persistency problem for a discrete optimization problem under uncertain objective, and $P_{\mathcal{\theta}}(x^*_i(\mb{\tilde{c}})=k)$, the … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

MINLP Strengthening for Separable Convex Quadratic Transportation-Cost UFL

In the context of a variation of the standard UFL (Uncapacitated Facility Location) problem, but with an objective function that is a separable convex quadratic function of the transportation costs, we present some techniques for improving relaxations of MINLP formulations. We use a disaggregation principle and a strategy of developing model-specific valid inequalities (some nonlinear), … Read more

MIR Closures of Polyhedral Sets

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR closure of a polyhedral set is equal to its split closure and the associated separation problem is NP-hard. We describe a mixed-integer programming (MIP) model with linear constraints and a non-linear objective for separating an arbitrary point from the MIR closure of a … Read more

Solving the uncapacitated facility location problem with semi-Lagrangian relaxation

The semi-Lagrangian Relaxation (SLR) method has been introduced in Beltran et al. (2006) to solve the p-median problem. In this paper we apply the method to the Uncapacitated Facility Location (UFL) problem. We perform computational experiments on two main collections of UFL problems with unknown optimal values. On one collection, we manage to solve to … Read more

A Lifted Linear Programming Branch-and-Bound Algorithm for Mixed Integer Conic Quadratic Programs

This paper develops a linear programming based branch-and-bound algorithm for mixed integer conic quadratic programs. The algorithm is based on a higher dimensional or lifted polyhedral relaxation of conic quadratic constraints introduced by Ben-Tal and Nemirovski. The algorithm is different from other linear programming based branch-and-bound algorithms for mixed integer nonlinear programs in that, it … Read more

Lattice based extended formulations for integer linear equality systems

We study different extended formulations for the set $X =\{x\in\mathbb{Z}^n \mid Ax = Ax^0\}$ in order to tackle the feasibility problem for the set $X_+=X \cap \mathbb{Z}^n_+$. Here the goal is not to find an improved polyhedral relaxation of conv$(X_+)$, but rather to reformulate in such a way that the new variables introduced provide good … Read more