Solving large MINLPs on computational grids

We consider the solution of Mixed Integer Nonlinear Programming (MINLP) problems by a parallel implementation of nonlinear branch-and-bound on a computational grid or meta-computer. Computational experience on a set of large MINLPs is reported which indicates that this approach is efficient for the solution of large MINLPs. Citation Numerical Analysis Report NA/200, Department of Mathematics, … Read more

The Integration of an Interior-Point Cutting-Plane Method within a Branch-and-Price Algorithm

This paper presents a novel integration of interior point cutting plane methods within branch-and-price algorithms. Unlike the classical method, columns are generated at a “central” dual solution by applying the analytic centre cutting plane method (ACCPM) on the dual of the full master problem. First, we introduce improvements to ACCPM. We propose a new procedure … Read more

Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system

In the literature, thermal insulation systems with a fixed number of heat intercepts have been optimized with respect to intercept locations and temperatures. The number of intercepts and the types of insulators that surround them were chosen by parametric studies. This was because the optimization methods used could not treat such categorical variables. Discrete optimization … Read more

Pattern search algorithms for mixed variable programming

Many engineering optimization problems involve a special kind of discrete variable that {\em can} be represented by a number, but this representation has no significance. Such variables arise when a decision involves some situation like a choice from an unordered list of categories. This has two implications: The standard approach of solving problems with continuous … Read more

Branch-and-cut for the k-way equipartition problem

We investigate the polyhedral structure of a formulation of the k-way equipartition problem and a branch-and-cut algorithm for the problem. The k-way equipartition problem requires dividing the vertices of a weighted graph into k equally sized sets, so as to minimize the total weight of edges that have both endpoints in the same set. Applications … Read more

Realignment in the NFL

The National Football League (NFL) in the United States will expand to 32 teams in 2002 with the addition of a team in Houston. At that point, the league will be realigned into eight divisions, each containing four teams. We describe a branch-and-cut algorithm for minimizing the sum of intradivisional travel distances. We consider first … Read more

A Multi-stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty

This paper addresses a multi-period investment model for capacity expansion in an uncertain environment. Using a scenario tree approach to model the evolution of uncertain demand and cost parameters, and fixed-charge cost functions to model the economies of scale in expansion costs, we develop a multi-stage stochastic integer programming formulation for the problem. A reformulation … Read more

Re-Optimization of Signaling Transfer Points

In this paper we describe the results of a computational study towards the (re)optimization of signaling transfer points (STPs) in telecommunication networks. The best performance of an STP is achieved whenever the traffic load is evenly distributed among the internal components. Due to the continuously changing traffic pattern, the load of the components has to … Read more

Generating Convex Polynomial Inequalities for Mixed 0-1 Programs

We develop a method for generating valid convex polynomial inequalities for mixed 0-1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities. Article Download View Generating Convex … Read more