Survivable Energy Markets

In this paper we present a centralized model for managing, at the same time, the dayahead energy market and the reserve market in order to price through the market, beside energy, the overall cost of reliability and to assure that the power grid survives the failure of any single components, so to avoid extended blackouts. … Read more

A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. … Read more

A Feasibility Pump for Mixed Integer Nonlinear Programs

We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within … Read more

Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in management and machine scheduling, and also appears as a subproblem in decomposition techniques for network design and other related problems. We present a new approach for determining facets of … Read more

Dynamic Enumeration of All Mixed Cells

The polyhedral homotopy method, which has been known as a powerful numerical method for computing all isolated zeros of a polynomial system, requires all mixed cells of the support of the system to construct a family of homotopy functions. Finding the mixed cells is formulated in terms of a linear inequality system with an additional … Read more

Finding the best root node strategy for the approximation of the time-indexed bound in min-sum scheduling

We identify the best root node strategy for the approximation of the time-indexed bound in min-sum scheduling by sorting through various options that involve the primal simplex, dual simplex, and barrier methods for linear programming, the network simplex method for network flow problems, and Dantzig-Wolfe decomposition and column generation. CitationSubmitted for publication.ArticleDownload View PDF

Facets of Two-Dimensional Infinite Group Problems

In this paper, we lay the foundation for the study of the two-dimensional mixed integer infinite group problem (2DMIIGP). We introduce tools to determine if a given continuous and piecewise linear function over the two-dimensional infinite group is subadditive and to determine whether it defines a facet. We then present two different constructions that yield … Read more

A new model and a computational study for Demand-wise Shared Protection

This report combines the contributions to INOC 2005 (Wessälly et al., 2005) and DRCN 2005 (Gruber et al., 2005). A new integer linear programming model for the end-to-end survivability concept deman d-wise shared protection (DSP) is presented. DSP is based on the idea that backup capacity is dedicated to a particular demand, but shared within … Read more

An algorithmic framework for convex mixed integer nonlinear programs

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent … Read more

A novel integer programming formulation for the K-SONET ring assignment problem

We consider the problem of interconnecting a set of customer sites using SONET rings of equal capacity, which can be defined as follows: Given an undirected graph G=(V,E) with nonnegative edge weight d(u,v), (u,v) in E, and two integers K and B, find a partition of the nodes of G into K subsets so that … Read more