Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive different colors. Any valid total coloring induces a partition of the … Read more

Variable and constraint reduction techniques for the temporal bin packing problem with fire-ups

The aim of this letter is to design and computationally test several improvements for the compact integer linear programming (ILP) formulations of the temporal bin packing problem with fire-ups (TBPP-FU). This problem is a challenging generalization of the classical bin packing problem in which the items, interpreted as jobs of given weight, are active only … Read more

A Benders-type Approach for Robust Optimization of Kidney Exchanges under Full Recourse

The goal of kidney exchange programs is to match recipients with a willing but incompatible donor with another compatible donor, so as to maximize total (weighted) transplants. There is significant uncertainty in this process, as planned transplants may be cancelled for a variety of reasons. Planning exchanges while considering failures, and options for recourse, is … Read more

Retail Store Layout Optimization for Maximum Product Visibility

It is well-established that increased product visibility to shoppers leads to higher sales for retailers. In this study, we propose an optimization methodology which assigns product categories and subcategories to store locations and sublocations to maximize the overall visibility of products to shoppers. The methodology is hierarchically developed to meet strategic and tactical layout planning … Read more

The Stochastic Pseudo-Star Degree Centrality Problem

We introduce the stochastic pseudo-star degree centrality problem, which focuses on a novel probabilistic group-based centrality metric. The goal is to identify a feasible induced pseudo-star, which is defined as a collection of nodes forming a star network with a certain probability, such that it maximizes the sum of the individual probabilities of unique assignments … Read more

A new perspective on low-rank optimization

A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function — the matrix analog of the perspective function — and characterize explicitly … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

Beyond Symmetry: Best Submatrix Selection for the Sparse Truncated SVD

Truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation, has been successfully applied to many domains such as biology, healthcare, and others, where high-dimensional datasets are prevalent. To enhance the interpretability of the truncated SVD, sparse SVD (SSVD) is introduced to select a few rows and columns of the original matrix … Read more

A Separation Algorithm for the Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) is a well-known NP-hard optimisation problem with applications in logistics. Although many families of facet-defining inequalities are known for the associated polyhedron, very little work has been done on separation algorithms. We present the first ever polynomial-time separation algorithm for the SPLP that separates exactly over an exponentially large … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more