Evaluating Mixed-Integer Programming Models over Multiple Right-hand Sides

A critical measure of model quality for a mixed-integer program (MIP) is the difference, or gap, between its optimal objective value and that of its linear programming relaxation. In some cases, the right-hand side is not known exactly; however, there is no consensus metric for evaluating a MIP model when considering multiple right-hand sides. In … Read more

Dual Bounds from Decision Diagram-Based Route Relaxations: An Application to Truck-Drone Routing

For vehicle routing problems, strong dual bounds on the optimal value are needed to develop scalable exact algorithms, as well as to evaluate the performance of heuristics. In this work, we propose an iterative algorithm to compute dual bounds motivated by connections between decision diagrams (DDs) and dynamic programming (DP) models used for pricing in … Read more

A binary linear programming approach for supporting administrative territorial consolidation

The objective of this paper is to develop a scalable binary linear programming model for finding the optimal aggregation of communes into spatially contiguous administrative territorial units (ATUs) constrained on certain balancing criteria. The requirement for the ATUs to be contiguous represents the main computational bottleneck and, therefore, it prevents one from using such models … Read more

The complexity of branch-and-price algorithms for the capacitated vehicle routing problem with stochastic demands

The capacitated vehicle routing problem with stochastic demands (CVRPSD) is a variant of the deterministic capacitated vehicle routing problem where customer demands are random variables. While the most successful formulations for several deterministic vehicle-routing problem variants are based on a set-partitioning formulation, adapting such formulations for the CVRPSD under mild assumptions on the demands remains … Read more

On the strength of recursive McCormick relaxations for binary polynomial optimization

Recursive McCormick relaxations have been among the most popular convexification techniques for binary polynomial optimization problems. It is well-understood that both the quality and the size of these relaxations depend on the recursive sequence and finding an optimal recursive sequence amounts to solving a difficult combinatorial optimization problem. In this paper, we prove that any … Read more

A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more

Optimizing Vaccine Distribution in Developing Countries under Natural Disaster Risk

For many developing countries, COVID-19 vaccination roll-out programs are not only slow but vaccination centers are also exposed to the risk of natural disaster, like flooding, which may slow down vaccination progress even further. Policy-makers in developing countries therefore seek to implement strategies that hedge against distribution risk in order for vaccination campaigns to run … Read more

Dynamic Rebalancing Optimization for Bike-sharing Systems: A Modeling Framework and Empirical Comparison

Bike-sharing systems have been implemented in multiple major cities, offering a low-cost and environmentally friendly transportation alternative to vehicles. Due to the stochastic nature of customer trips, stations are often unbalanced, resulting in unsatisfied demand. As a remedy, operators employ trucks to rebalance bikes among unbalanced stations. Given the complexity of the dynamic rebalancing planning, … Read more

A note on quadratic constraints with indicator variables: Convex hull description and perspective relaxation

In this paper, we study the mixed-integer nonlinear set given by a separable quadratic constraint on continuous variables, where each continuous variable is controlled by an additional indicator. This set occurs pervasively in optimization problems with uncertainty and in machine learning. We show that optimization over this set is NP-hard. Despite this negative result, we … Read more

Relaxations and Duality for Multiobjective Integer Programming

Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective func- tions over a set of linear constraints and integer variables. In this paper, we present continuous, convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them. The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a … Read more