Polyhedral Approximation Strategies in Nonconvex Mixed-Integer Nonlinear Programming

Different versions of polyhedral outer approximation is used by many algorithms for mixed-integer nonlinear programming (MINLP). While it has been demonstrated that such methods work well for convex MINLP, extending them to solve also nonconvex problems has been challenging. One solver based on outer linearization of the nonlinear feasible set of MINLP problems is the … Read more

Continuous Cubic Formulations for Cluster Detection Problems in Networks

The celebrated Motzkin-Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Tur\'{a}n’s theorem in graph theory, but was later used to develop … Read more

Strong Relaxations for Continuous Nonlinear Programs Based on Decision Diagrams

Over the past decade, Decision Diagrams (DDs) have risen as a powerful modeling tool to solve discrete optimization problems. The extension of this emerging concept to continuous problems, however, has remained a challenge, posing a limitation on its applicability scope. In this paper, we introduce a novel framework that utilizes DDs to model continuous programs. … Read more

Orbital Conflict: Cutting Planes for Symmetric Integer Programs

Cutting planes have been an important factor in the impressive progress made by integer programming (IP) solvers in the past two decades. However, cutting planes have had little impact on improving performance for symmetric IPs. Rather, the main breakthroughs for solving symmetric IPs have been achieved by cleverly exploiting symmetry in the enumeration phase of … Read more

Improving solve times of stable matching problems through preprocessing

We present new theory, heuristics and algorithms for preprocessing instances of the Stable Marriage with Ties and Incomplete lists (SMTI), the Hospitals/Residents with Ties (HRT), and the Worker-Firms with Ties (WFT) problems. We show that instances of these problems can be preprocessed by removing from the preference lists of some agents entries that correspond to … Read more

A Combinatorial Cut-and-Lift Procedure with an Application to 0-1 Chance Constraints

Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0-1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a large range of … Read more

A Polyhedral Approach to Bisubmodular Function Minimization

We consider minimization problems with bisubmodular objective functions. We propose a class of valid inequalities, which we call the poly-bimatroid inequalities and prove that these inequalities, along with trivial bound constraints, fully describe the convex hull of the epigraph of a bisubmodular function. We develop a cutting plane algorithm for general bisubmodular minimization problems using … Read more

A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem

We introduce a new facility layout problem, the so-called T-Row Facility Layout Problem (TRFLP). The TRFLP consists of a set of one-dimensional departments with pairwise transport weights between them and two orthogonal rows which form a T such that departments in different rows cannot overlap. The aim is to find a non-overlapping assignment of the … Read more

Complexity of cutting planes and branch-and-bound in mixed-integer optimization

We investigate the theoretical complexity of branch-and-bound (BB) and cutting plane (CP) algorithms for mixed-integer optimization. In particular, we study the relative efficiency of BB and CP, when both are based on the same family of disjunctions. We extend a result of Dash to the nonlinear setting which shows that for convex 0/1 problems, CP … Read more

Optimization Problems Involving Matrix Multiplication with Applications in Material Science and Biology

We consider optimization problems involving the multiplication of variable matrices to be selected from a given family, which might be a discrete set, a continuous set or a combination of both. Such nonlinear, and possibly discrete, optimization problems arise in applications from biology and material science among others, and are known to be NP-Hard for … Read more