Knapsack Polytopes – A Survey

The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy a given single linear inequality with non-negative coefficients. This paper provides a comprehensive overview of knapsack polytopes. We discuss basic polyhedral properties, (lifted) cover and other valid inequalities, cases for which complete linear descriptions are known, geometric properties for small dimensions, … Read more

Discrete Optimization Methods for Group Model Selection in Compressed Sensing

In this article we study the problem of signal recovery for group models. More precisely for a given set of groups, each containing a small subset of indices, and for given linear sketches of the true signal vector which is known to be group-sparse in the sense that its support is contained in the union … Read more

Planning Out-of-Hours Services for Pharmacies

The supply of pharmaceuticals is one important factor in a functioning health care system. In the German health care system, the chambers of pharmacists are legally obliged to ensure that every resident can find an open pharmacy at any day and night time within an appropriate distance. To that end, the chambers of pharmacists create … Read more

Exact Multiple Sequence Alignment by Synchronized Decision Diagrams

This paper develops an exact solution algorithm for the Multiple Sequence Alignment (MSA) problem. In the first step, we design a dynamic programming model and use it to construct a novel Multi-valued Decision Diagrams (MDD) representation of all pairwise sequence alignments (PSA). PSA MDDs are then synchronized using side constraints to model the MSA problem … Read more

Multi-objective optimization models for many-to-one matching problems

This paper is concerned with many-to-one matching problems for assigning residents to hospitals according to their preferences. The stable matching model aims at finding a stable matching, and the assignment game model involves maximizing the total utility; however, these two objectives are incompatible in general. We also focus on a situation where there are predetermined … Read more

An Iterative Graph Expansion Approach for the Scheduling and Routing of Airplanes

A tourism company that offers fly-in safaris is faced with the challenge to route and schedule its fleet of airplanes in an optimal way. Over the course of a given time horizon several groups of tourists have to be picked up at airports and flown to their destinations within a certain time-window. Furthermore the number … Read more

Team as a Service: Team Formation on Social Networks

Team as a Service (TaaS) is a new outsourcing service that enables on-demand creation and management of distributed teams for fast growing companies. The companies that use the TaaS model form a team according to the needs of a given project and provide managerial service throughout. Motivated by this new application, we study the Team … Read more

Structure-driven fix-and-propagate heuristics for mixed integer programming

Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously … Read more

An Exact Method for Constrained Maximization of the Conditional Value-at-Risk of a Class of Stochastic Submodular Functions

We consider a class of risk-averse submodular maximization problems (RASM) where the objective is the conditional value-at-risk (CVaR) of a random nondecreasing submodular function at a given risk level. We propose valid inequalities and an exact general method for solving RASM under the assumption that we have an efficient oracle that computes the CVaR of … Read more

Multi-Objective Optimization for Politically Fair Districting: A Scalable Multilevel Approach

Political districting in the United States is a decennial process of redrawing the boundaries of congressional and state legislative districts. The notion of fairness in political districting has been an important topic of subjective debate, with district maps having consequences to multiple stakeholders. Even though districting as an optimization problem has been well-studied, existing models … Read more