Combinatorial Integral Approximation for Mixed-Integer PDE-Constrained Optimization Problems

We apply the basic principles underlying combinatorial integral approximation methods for mixed-integer optimal control with ordinary differential equations in general, and the sum-up rounding algorithm specifically, to optimization problems with partial differential equation (PDE) constraints. By doing so, we identify two possible generalizations that are applicable to problems involving PDE constraints with mesh-dependent integer variables, … Read more

Strong formulations for quadratic optimization with M-matrices and semi-continuous variables

We study quadratic optimization with semi-continuous variables and an M-matrix, i.e., PSD with non-positive off-diagonal entries. This structure arises in image segmentation, portfolio optimization, as well as a substructure of general quadratic optimization problems. We prove, under mild assumptions, that the minimization problem is solvable in polynomial time by showing its equivalence to a submodular … Read more

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

We consider the problem of discrete arc sizing for tree-shaped potential networks with respect to infinitely many demand scenarios. This means that the arc sizes need to be feasible for an infinite set of scenarios. The problem can be seen as a strictly robust counterpart of a single-scenario network design problem, which is shown to … Read more

Optimal Black Start Allocation for Power System Restoration

Equipment failures, operator errors, natural disasters and cyber-attacks can and have caused extended blackouts of the electric grid. Even though such events are rare, preparedness for them is critical because extended power outages endanger human lives, compromise national security, or result in economic losses of billions of dollars. Since most of the generating units cannot … Read more

Least cost influence propagation in (social) networks

Influence maximization problems aim to identify key players in (social) networks and are typically motivated from viral marketing. In this work, we introduce and study the Generalized Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem variants and allows to overcome some of their limitations. A formulation that is based on the concept … Read more

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

The Continuous Time Inventory Routing Problem

We consider a continuous time variant of the Inventory Routing Problem in which the maximum quantity that can delivered at a customer depends on the customer’s storage capacity and product inventory at the time of the delivery. We investigate critical components of a dynamic discretization discovery algorithm and demonstrate in an extensive computational study that … Read more

A polynomial time algorithm for the linearization problem of the QSPP and its applications

Given an instance of the quadratic shortest path problem (QSPP) on a digraph $G$, the linearization problem for the QSPP asks whether there exists an instance of the linear shortest path problem on $G$ such that the associated costs for both problems are equal for every $s$-$t$ path in $G$. We prove here that the … Read more

Staircase Compatibility and its Applications in Scheduling and Piecewise Linearization

We consider the clique problem with multiple-choice constraints (CPMC) and characterize a case where it is possible to give an efficient description of the convex hull of its feasible solutions. This new special case, which we call staircase compatibility, generalizes common properties in several applications and allows for a linear description of the integer feasible … Read more

Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

We study network models where flows cannot be split or merged when passing through certain nodes, i.e., for such nodes, each incoming arc flow must be matched to an outgoing arc flow of identical value. This requirement, which we call “no-split no-merge” (NSNM), appears in railroad applications where train compositions can only be modified at … Read more