Bound Propagation for Linear Inequalities Revisited

In 2011, Korovin and Voronkov (Proceedings of the 23rd International Conference on Automated Deduction, vol. 6803 of Lecture Notes in Computer Science, pp. 369-383) proposed a method based on bound propagation for solving systems of linear inequalities. In this paper, an alternate description of their algorithm which also incorporates an addition that returns a certificate … Read more

Column-Randomized Linear Programs: Performance Guarantees and Applications

We propose a randomized method for solving linear programs with a large number of columns but a relatively small number of constraints. Since enumerating all the columns is usually unrealistic, such linear programs are commonly solved by column generation, which is often still computationally challenging due to the intractability of the subproblem in many applications. … Read more

The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures … Read more

Projection and rescaling algorithm for finding most interior solutions to polyhedral conic systems

We propose a simple projection and rescaling algorithm that finds {\em most interior} solutions to the pair of feasibility problems \[ \text{find} x\in L\cap \R^n_{+} \text{ and } \text{find} \; \hat x\in L^\perp\cap\R^n_{+}, \] where $L$ is a linear subspace of $\R^n$ and $L^\perp$ is its orthogonal complement. The algorithm complements a basic procedure that … Read more

A New Preconditioning Approach for an Interior Point-Proximal Method of Multipliers for Linear and Convex Quadratic Programming

In this paper, we address the efficient numerical solution of linear and quadratic programming problems, often of large scale. With this aim, we devise an infeasible interior point method, blended with the proximal method of multipliers, which in turn results in a primal-dual regularized interior point method. Application of this method gives rise to a … Read more

Short simplex paths in lattice polytopes

We consider the problem of optimizing a linear function over a lattice polytope P contained in [0,k]^n and defined via m linear inequalities. We design a simplex algorithm that, given an initial vertex, reaches an optimal vertex by tracing a path along the edges of P of length at most O(n^6 k log k). The … Read more

Linear Programming using Limited-Precision Oracles

Since the elimination algorithm of Fourier and Motzkin, many different methods have been developed for solving linear programs. When analyzing the time complexity of LP algorithms, it is typically either assumed that calculations are performed exactly and bounds are derived on the number of elementary arithmetic operations necessary, or the cost of all arithmetic operations … Read more

Supermodularity in Two-Stage Distributionally Robust Optimization

In this paper, we solve a class of two-stage distributionally robust optimization problems which have the property of supermodularity. We exploit the explicit upper bounds on the expectation of supermodular functions and derive the worst-case distribution for the robust counterpart. This enables us to develop an efficient method to derive an exact optimal solution of … Read more

An Oblivious Ellipsoid Algorithm for Solving a System of (In)Feasible Linear Inequalities

The ellipsoid algorithm is a fundamental algorithm for computing a solution to the system of m linear inequalities in n variables (P) when its set of solutions has positive volume. However, when (P) is infeasible, the ellipsoid algorithm has no mechanism for proving that (P) is infeasible. This is in contrast to the other two … Read more

On the existence of a short pivoting sequence for a linear program

Pivoting methods are of vital importance for linear programming, the simplex method being the by far most well-known. In this paper, a primal-dual pair of linear programs in canonical form is considered. We show that there exists a sequence of pivots, whose length is bounded by the minimum dimension of the constraint matrix, such that … Read more