Central Swaths (A Generalization of the Central Path)

We develop a natural generalization to the notion of the central path — a notion that lies at the heart of interior-point methods for convex optimization. The generalization is accomplished via the “derivative cones” of a “hyperbolicity cone,” the derivatives being direct and mathematically-appealing relaxations of the underlying (hyperbolic) conic constraint, be it the non-negative … Read more

Shrink-Wrapping trajectories for Linear Programming

Hyperbolic Programming (HP) –minimizing a linear functional over an affine subspace of a finite-dimensional real vector space intersected with the so-called hyperbolicity cone– is a class of convex optimization problems that contains well-known Linear Programming (LP). In particular, for any LP one can readily provide a sequence of HP relaxations. Based on these hyperbolic relaxations, … Read more

Semidefinite code bounds based on quadruple distances

Let A(n, d) be the maximum number of 0, 1 words of length n, any two having Hamming distance at least d. We prove A(20, 8) = 256, which implies that the quadruply shortened Golay code is optimal. Moreover, we show A(18, 6) ≤ 673, A(19, 6) ≤ 1237, A(20, 6) ≤ 2279, A(23, 6) … Read more

Separation and Relaxation for cones of quadratic forms

Let P be a pointed, polyhedral cone in R_n. In this paper, we study the cone C = cone{xx^T: x \in P} of quadratic forms. Understanding the structure of C is important for globally solving NP-hard quadratic programs over P. We establish key characteristics of C and construct a separation algorithm for C provided one … Read more

Information Geometry and Primal-Dual Interior-point Algorithms

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. We introduce an information geometric structure for a conic linear program based on a self-concordant barrier function. Riemannian metric is defined with the Hessian of the barrier function. We introduce two connections $\nabla$ and $\nabla^*$ which roughly corresponds to the primal and … Read more

Truss topology design with integer variables made easy

We propose a new look at the problem of truss topology optimization with integer or binary variables. We show that the problem can be equivalently formulated as an integer \emph{linear} semidefinite optimization problem. This makes its numerical solution much easier, compared to existing approaches. We demonstrate that one can use an off-the-shelf solver with default … Read more

The Globally Uniquely Solvable Property of Second-Order Cone Linear Complementarity Problems

The globally uniquely solvable (GUS) property of the linear transformation of the linear complementarity problems over symmetric cones has been studied recently by Gowda et al. via the approach of Euclidean Jordan algebra. In this paper, we contribute a new approach to characterizing the GUS property of the linear transformation of the second-order cone linear … Read more

Convex approximations in stochastic programming by semidefinite programming

The following question arises in stochastic programming: how can one approximate a noisy convex function with a convex quadratic function that is optimal in some sense. Using several approaches for constructing convex approximations we present some optimization models yielding convex quadratic regressions that are optimal approximations in $L_1$, $L_\infty$ and $L_2$ norm. Extensive numerical experiments … Read more

The tracial moment problem and trace-optimization of polynomials

The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f, what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not … Read more

Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube

We consider the problem of minimizing a polynomial on the hypercube [0,1]^n and derive new error bounds for the hierarchy of semidefinite programming approximations to this problem corresponding to the Positivstellensatz of Schmuedgen (1991). The main tool we employ is Bernstein approximations of polynomials, which also gives constructive proofs and degree bounds for positivity certificates … Read more