Constraint Reduction for Linear Programs with Many Inequality Constraints

Consider solving a linear program in standard form, where the constraint matrix $A$ is $m \times n$, with $n \gg m \gg 1$. Such problems arise, for example, as the result of finely discretizing a semi-infinite program. The cost per iteration of typical primal-dual interior-point methods on such problems is $O(m^2n)$. We propose to reduce … Read more

A NEW BARRIER FOR A CLASS OF SEMIDEFINITE PROBLEMS

We introduce a new barrier function to solve a class of Semidefinite Optimization Problems (SOP) with bounded variables. That class is motivated by some (SOP) as the minimization of the sum of the first few eigenvalues of symmetric matrices and graph partitioning problems. We study the primal-dual central path defined by the new barrier and … Read more

Computing the stability number of a graph via linear and semidefinite programming

We study certain linear and semidefinite programming lifting approximation schemes for computing the stability number of a graph. Our work is based on, and refines De Klerk and Pasechnik’s approach to approximating the stability number via copositive programming (SIAM J. Optim. 12 (2002), 875–892). We provide a closed-form expression for the values computed by the … Read more

A Semidefinite Optimization Approach for the Single-Row Layout Problem with Unequal Dimensions

The facility layout problem is concerned with the arrangement of a given number of rectangular facilities so as to minimize the total cost associated with the (known or projected) interactions between them. We consider the one-dimensional space allocation problem (ODSAP), also known as the single-row facility layout problem, which consists in finding an optimal linear … Read more

On Mehrotra-Type Predictor-Corrector Algorithms

In this paper we discuss the polynomiality of Mehrotra-type predictor-corrector algorithms. We consider a variant of the original prototype of the algorithm that has been widely used in several IPM based optimization packages, for which no complexity result is known to date. By an example we show that in this variant the usual Mehrotra-type adaptive … Read more

On the Convergence of a Primal-Dual Second-Order Corrector Interior Point Algorithm for Linear Programming

The Primal-Dual Second Order Corrector (PDSOC) algorithm that we investigate computes on each iteration a corrector direction in addition to the direction of the standard primal-dual path-following interior point method (Kojima et al., 1989) for Linear Programming (LP), in an attempt to improve performance. The corrector is multiplied by the square of the stepsize in … Read more

Parallel Primal-Dual Interior-Point Methods for SemiDefinite Programs

The Semidefinite Program (SDP) is a fundamental problem in mathematical programming. It covers a wide range of applications, such as combinatorial optimization, control theory, polynomial optimization, and quantum chemistry. Solving extremely large-scale SDPs which could not be solved before is a significant work to open up a new vista of future applications of SDPs. Our … Read more

Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems

We propose a primal-dual path-following Mehrotra-type predictor-corrector method for solving convex quadratic semidefinite programming (QSDP) problems. For the special case when the quadratic term has the form $\frac{1}{2} X \bul (UXU)$, we compute the search direction at each iteration from the Schur complement equation. We are able to solve the Schur complement equation efficiently via … Read more

SparsePOP : a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems

SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method proposed for polynomial optimization problems (POPs) in the recent paper by Waki et al. The sparse SDP relaxation is based on a hierarchy of LMI relaxations of increasing dimensions by Lasserre, and exploits a sparsity structure of polynomials in POPs. The efficiency … Read more

Solving Large-Scale Semidefinite Programs in Parallel

We describe an approach to the parallel and distributed solution of large-scale, block structured semidefinite programs using the spectral bundle method. Various elements of this approach (such as data distribution, an implicitly restarted Lanczos method tailored to handle block diagonal structure, a mixed polyhedral-semidefinite subdifferential model, and other aspects related to parallelism) are combined in … Read more