Tree Bounds for Sums of Bernoulli Random Variables: A Linear Optimization Approach

We study the problem of computing the tightest upper and lower bounds on the probability that the sum of n dependent Bernoulli random variables exceeds an integer k. Under knowledge of all pairs of bivariate distributions denoted by a complete graph, the bounds are NP-hard to compute. When the bivariate distributions are specified on a … Read more

An Oblivious Ellipsoid Algorithm for Solving a System of (In)Feasible Linear Inequalities

The ellipsoid algorithm is a fundamental algorithm for computing a solution to the system of m linear inequalities in n variables (P) when its set of solutions has positive volume. However, when (P) is infeasible, the ellipsoid algorithm has no mechanism for proving that (P) is infeasible. This is in contrast to the other two … Read more

The Outcome Range Problem in Interval Linear Programming

Quantifying extra functions, herein referred to as outcome functions, over optimal solutions of an optimization problem can provide decision makers with additional information on a system. This bears more importance when the optimization problem is subject to uncertainty in input parameters. In this paper, we consider linear programming problems in which input parameters are described … Read more

On Polyhedral and Second-Order-Cone Decompositions of Semidefinite Optimization Problems

We study a cutting-plane method for semidefinite optimization problems (SDOs), and supply a proof of the method’s convergence, under a boundedness assumption. By relating the method’s rate of convergence to an initial outer approximation’s diameter, we argue that the method performs well when initialized with a second-order-cone approximation, instead of a linear approximation. We invoke … Read more

On Sum of Squares Representation of Convex Forms and Generalized Cauchy-Schwarz Inequalities

A convex form of degree larger than one is always nonnegative since it vanishes together with its gradient at the origin. In 2007, Parrilo asked if convex forms are always sums of squares. A few years later, Blekherman answered the question in the negative by showing through volume arguments that for high enough number of … Read more

A relaxed interior point method for low-rank semidefinite programming problems with applications to matrix completion

A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal iterates is imposed. To accommodate such a (restrictive) … Read more

On the existence of a short pivoting sequence for a linear program

Pivoting methods are of vital importance for linear programming, the simplex method being the by far most well-known. In this paper, a primal-dual pair of linear programs in canonical form is considered. We show that there exists a sequence of pivots, whose length is bounded by the minimum dimension of the constraint matrix, such that … Read more

Computing Estimators of Dantzig Selector type via Column and Constraint Generation

We consider a class of linear-programming based estimators in reconstructing a sparse signal from linear measurements. Specific formulations of the reconstruction problem considered here include Dantzig selector, basis pursuit (for the case in which the measurements contain no errors), and the fused Dantzig selector (for the case in which the underlying signal is piecewise constant). … Read more

A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics

Historically, scalability has been a major challenge to the successful application of semidefinite programming in fields such as machine learning, control, and robotics. In this paper, we survey recent approaches for addressing this challenge including (i) approaches for exploiting structure (e.g., sparsity and symmetry) in a problem, (ii) approaches that produce low-rank approximate solutions to … Read more

Error Bounds and Singularity Degree in Semidefinite Programming

In semidefinite programming a proposed optimal solution may be quite poor in spite of having sufficiently small residual in the optimality conditions. This issue may be framed in terms of the discrepancy between forward error (the unmeasurable `true error’) and backward error (the measurable violation of optimality conditions). In his seminal work, Sturm provided an … Read more