Maintaining a Basis Matrix in the Linear Programming Interior Point Method

To precondition the normal equation system from the linear programming (LP) interior point method, basis preconditioners choose a basis matrix dependent on column scaling factors. Two criteria for choosing the basis matrix are compared which yield a maximum volume or maximum weight basis. Finding a maximum volume basis requires a combinatorial effort, but it gives … Read more

Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation

We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton’s method for self-concordant functions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori en Teboulle [Mathematical Programming, 145(1-2):451–482, 2014], and extends recent performance estimation results for the method of … Read more

Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions

We consider the stability of a class of parameterized conic programming problems which are more general than the C2-smooth parameterization. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order sucient condition (named as Jacobian uniqueness conditions here) are satis ed at a feasible point of … Read more

Perturbation analysis of nonlinear semidefinite programming under Jacobian uniqueness conditions

We consider the stability of a class of parameterized nonlinear semidefinite programming problems whose objective function and constraint mapping all have second partial derivatives only with respect to the decision variable which are jointly continuous. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order … Read more

Exploiting sparsity for the min k-partition problem

The minimum k-partition problem is a challenging combinatorial problem with a diverse set of applications ranging from telecommunications to sports scheduling. It generalizes the max-cut problem and has been extensively studied since the late sixties. Strong integer formulations proposed in the literature suffer from a prohibitive number of valid inequalities and integer variables. In this … Read more

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of our hierarchies, compare them … Read more

On the effectiveness of primal and dual heuristics for the transportation problem

The transportation problem is one of the most popular problems in linear programming. Over the course of time a multitude of exact solution methods and heuristics have been proposed. Due to substantial progress of exact solvers since the mid of the last century, the interest in heuristics for the transportation problem over the last few … Read more

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a quantum … Read more

A Data-Driven Distributionally Robust Bound on the Expected Optimal Value of Uncertain Mixed 0-1 Linear Programming

This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from … Read more

On Solving the Quadratic Shortest Path Problem

The quadratic shortest path problem is the problem of finding a path in a directed graph such that the sum of interaction costs over all pairs of arcs on the path is minimized. We derive several semidefinite programming relaxations for the quadratic shortest path problem with a matrix variable of order $m+1$, where $m$ is … Read more