Permuting Spiked Matrices to Triangular Form and its Application to the Forrest-Tomlin Update

This paper is concerned with the problem of permuting a spiked matrix to triangular form. A spiked matrix results from changing one column or one row in a triangular matrix. In this paper we focus on changing one column in an upper triangular matrix. Spiked matrices arise in updating the LU factors of a matrix … Read more

A rounding procedure for semidefinite optimization

Recently, Mohammad-Nezhad and Terlaky studied the identification of the optimal partition for semidefinite optimization. An approximation of the optimal partition was obtained from a bounded sequence of solutions on, or in a neighborhood of the central path. Here, we use the approximation of the optimal partition in a rounding procedure to generate an approximate maximally … Read more

Simplex QP-based methods for minimizing a conic quadratic objective over polyhedra

We consider minimizing a conic quadratic objective over a polyhedron. Such problems arise in parametric value-at-risk minimization, portfolio optimization, and robust optimization with ellipsoidal objective uncertainty; and they can be solved by polynomial interior point algorithms for conic quadratic optimization. However, interior point algorithms are not well-suited for branch-and-bound algorithms for the discrete counterparts of … Read more

Semidefinite Programming and Nash Equilibria in Bimatrix Games

We explore the power of semidefinite programming (SDP) for finding additive epsilon-approximate Nash equilibria in bimatrix games. We introduce an SDP relaxation for a quadratic programming formulation of the Nash equilibrium (NE) problem and provide a number of valid inequalities to improve the quality of the relaxation. If a rank-1 solution to this SDP is … Read more

A Benders squared (B2) framework for infinite-horizon stochastic linear programs

We propose a nested decomposition scheme for infinite-horizon stochastic linear programs. Our approach can be seen as a provably convergent extension of stochastic dual dynamic programming to the infinite-horizon setting: we explore a sequence of finite-horizon problems of increasing length until we can prove convergence with a given confidence level. The methodology alternates between a … Read more

SDP-based Branch-and-Bound for Non-convex Quadratic Integer Optimization

Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed [11], which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST … Read more

On the Linear Extension Complexity of Stable Set Polytopes for Perfect Graphs

We study the linear extension complexity of stable set polytopes of perfect graphs. We make use of known structural results permitting to decompose perfect graphs into basic perfect graphs by means of two graph operations: 2-join and skew partitions. Exploiting the link between extension complexity and the nonnegative rank of an associated slack matrix, we … Read more

Improved Conic Reformulations for K-means Clustering

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing … Read more

Erratum to: On the DJL conjecture for order 6

In this note an erratum is provided to the article “On the DJL conjecture for order 6” by Naomi Shaked-Monderer, published in Operators and Matrices 11(1), 2017, 71–88. We will demonstrate and correct two errors in this article. The first error is in the statement of a proposition, which omits a certain category of extreme … Read more

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as linear programming and second-order cone … Read more