Erratum to: On the DJL conjecture for order 6

In this note an erratum is provided to the article “On the DJL conjecture for order 6” by Naomi Shaked-Monderer, published in Operators and Matrices 11(1), 2017, 71–88. We will demonstrate and correct two errors in this article. The first error is in the statement of a proposition, which omits a certain category of extreme … Read more

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as linear programming and second-order cone … Read more

Robust Quadratic Programming with Mixed-Integer Uncertainty

We study robust convex quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. These convex optimization problems are NP-hard but admit a conservative semidefinite programming … Read more

Infeasibility detection in the alternating direction method of multipliers for convex optimization

The alternating direction method of multipliers is a powerful operator splitting technique for solving structured optimization problems. For convex optimization problems, it is well-known that the algorithm generates iterates that converge to a solution, provided that it exists. If a solution does not exist, then the iterates diverge. Nevertheless, we show that they yield conclusive … Read more

A logarithmic barrier interior-point method based on majorant functions for second-order cone programming

We present a logarithmic barrier interior-point method for solving a second-order cone programming problem. Newton’s method is used to compute the descent direction, and majorant functions are used as an efficient alternative to line search methods to determine the displacement step along the direction. The efficiency of our method is shown by presenting numerical experiments. … Read more

A primal-dual interior-point method based on various selections of displacement step for second-order cone programming

In this paper, a primal-dual interior-point method equipped with various selections of the displacement step are derived for solving second-order cone programming problems. We first establish the existence and uniqueness of the optimal solution of the corresponding perturbed problem and then demonstrate its convergence to the optimal solution of the original problem. Next, we present … Read more

A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

A New Use of Douglas-Rachford Splitting and ADMM for Identifying Infeasible, Unbounded, and Pathological Conic Programs

In this paper, we present a method for identifying infeasible, unbounded, and pathological conic programs based on Douglas-Rachford splitting, or equivalently ADMM. When an optimization program is infeasible, unbounded, or pathological, the iterates of Douglas-Rachford splitting diverge.Somewhat surprisingly, such divergent iterates still provide useful information, which our method uses for identification. In addition, for strongly … Read more

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization

Plain vanilla K-means clustering is prone to produce unbalanced clusters and suffers from outlier sensitivity. To mitigate both shortcomings, we formulate a joint outlier-detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset. We cast this problem as a mixed-integer … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more