Alternating Direction Method of Multipliers for Linear Programming

Recently the alternating direction method of multipliers (ADMM) has been widely used for various applications arising in scientific computing areas. Most of these application models are, or can be easily reformulated as, linearly constrained convex minimization models with separable nonlinear objective functions. In this note we show that ADMM can also be easily used for … Read more

Iterative Refinement for Linear Programming

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification … Read more

Regularization vs. Relaxation: A convexification perspective of statistical variable selection

Variable selection is a fundamental task in statistical data analysis. Sparsity-inducing regularization methods are a popular class of methods that simultaneously perform variable selection and model estimation. The central problem is a quadratic optimization problem with an $\ell_0$-norm penalty. Exactly enforcing the $\ell_0$-norm penalty is computationally intractable for larger scale problems, so different sparsity-inducing penalty … Read more

A Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions

We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to obtain faster approach to the central path. In contrast to the … Read more

A MAX-CUT formulation of 0/1 programs

We consider the linear or quadratic 0/1 program \[P:\quad f^*=\min\{ c^Tx+x^TFx : \:A\,x =\b;\:x\in\{0,1\}^n\},\] for some vectors $c\in R^n$, $b\in Z^m$, some matrix $A\in Z^{m\times n}$ and some real symmetric matrix $F\in R^{n\times n}$. We show that $P$ can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of … Read more

A Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence

Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraint-reduced algorithm for semidefinite programming having both polynomial global … Read more

On measures of size for convex cones

By using an axiomatic approach we formalize the concept of size index for closed convex cones in the Euclidean space $\mathbb{R}^n$. We review a dozen of size indices disseminated through the literature, commenting on the advantages and disadvantages of each choice. CitationTo appear in Journal of Convex Analysis (2015) ArticleDownload View PDF

Dual Face Algorithm Using Gauss-Jordan Elimination for Linear Programming

The dual face algorithm uses Cholesky factorization, as would be not very suitable for sparse computations. The purpose of this paper is to present a dual face algorithm using Gauss-Jordan elimination for solving bounded-variable LP problems. ArticleDownload View PDF

Distributionally robust expectation inequalities for structured distributions

Quantifying the risk of unfortunate events occurring, despite limited distributional information, is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabilities in distributionally robust programming or judging the risk of financial positions can both be seen to involve risk quantification, notwithstanding distributional ambiguity. In this work we discuss worst-case probability and conditional … Read more

First order optimality conditions for mathematical programs with second-order cone complementarity constraints

In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by a second-order cone. We show that if the SOCMPCC is considered as an optimization problem with convex cone constraints, then Robinson’s constraint qualification … Read more