Polynomial SDP Cuts for Optimal Power Flow

The use of convex relaxations has lately gained considerable interest in Power Systems. These relaxations play a major role in providing quality guarantees for non-convex optimization problems. For the Optimal Power Flow (OPF) prob- lem, the semidefinite programming (SDP) relaxation is known to produce tight lower bounds. Unfortunately, SDP solvers still suffer from a lack … Read more

The Lyapunov rank of an improper cone

Let K be a closed convex cone with dual K^* in a finite-dimensional real inner-product space V. The complementarity set of K is C(K) = { (x, s) in K × K^* | = 0 }. We say that a linear transformation L : V -> V is Lyapunov-like on K if = 0 for all (x, … Read more

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the … Read more

Examples with Decreasing Largest Inscribed Ball for Deterministic Rescaling Algorithms

Recently, Pena and Soheili presented a deterministic rescaling perceptron algorithm and proved that it solves a feasible perceptron problem in $O(m^2n^2\log(\rho^{-1}))$ perceptron update steps, where $\rho$ is the radius of the largest inscribed ball. The original stochastic rescaling perceptron algorithm of Dunagan and Vempala is based on systematic increase of $\rho$, while the proof of … Read more

Weak Infeasibility in Second Order Cone Programming

The objective of this work is to study weak infeasibility in second order cone programming. For this purpose, we consider a relaxation sequence of feasibility problems that mostly preserve the feasibility status of the original problem. This is used to show that for a given weakly infeasible problem at most m directions are needed to … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more

Simple Approximations of Semialgebraic Sets and their Applications to Control

Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes … Read more

Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach

We establish connections between the facial reduction algorithm of Borwein and Wolkowicz and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimization problems. Specifically, we show the self-dual homogeneous model returns facial reduction certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation, … Read more

Linear conic formulations for two-party correlations and values of nonlocal games

In this work we study the sets of two-party correlations generated from a Bell scenario involving two spatially separated systems with respect to various physical models. We show that the sets of classical, quantum, no-signaling and unrestricted correlations can be expressed as projections of affine sections of appropriate convex cones. As a by-product, we identify … Read more