Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more

Inner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Programs: A Unified Analysis

Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on … Read more

The solution of Euclidean norm trust region SQP subproblems via second order cone programs, an overview and elementary introduction

It is well known that convex SQP subproblems with a Euclidean norm trust region constraint can be reduced to second order cone programs for which the theory of Euclidean Jordan-algebras leads to efficient interior-point algorithms. Here, a brief and self-contained outline of the principles of such an implementation is given. All identities relevant for the … Read more

Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Quadratic and Semi-Definite Programming

In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound condition, we establish the global linear rate of convergence for a more general semi-proximal ADMM with the dual steplength … Read more

A priori bounds on the condition numbers in interior-point methods

Interior-point methods are known to be sensitive to ill-conditioning and to scaling of the data. This paper presents new asymptotically sharp bounds on the condition numbers of the linear systems at each iteration of an interior-point method for solving linear or semidefinite programs and discusses a stopping test which leads to a problem-independent “a priori” … Read more

Mixed Integer Second-Order Cone Programming for the Horizontal and Vertical Free-flight Planning Problem

In the past, travel routes for civil passenger and cargo air traffic were aligned to the air traffic network (ATN). To resolve the network congestion problem, the free-flight system has recently been introduced in more and more regions around the globe, allowing flight operations to make full use of the four space-and-time dimensions. For the … Read more

Semidefinite approximations of the polynomial abscissa

Given a univariate polynomial, its abscissa is the maximum real part of its roots. The abscissa arises naturally when controlling linear differential equations. As a function of the polynomial coefficients, the abscissa is H\”older continuous, and not locally Lipschitz in general, which is a source of numerical difficulties for designing and optimizing control laws. In … Read more

Closing the gap in pivot methods for linear programming

We propose pivot methods that solve linear programs by trying to close the duality gap from both ends. The first method maintains a set $\B$ of at most three bases, each of a different type, in each iteration: a primal feasible basis $B^p$, a dual feasible basis $B^d$ and a primal-and-dual infeasible basis $B^i$. From … Read more

Simplified semidefinite and completely positive relaxations

This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented by Burer. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the … Read more

The Jordan Algebraic Structure of the Circular Cone

In this paper, we study and analyze the algebraic structure of the circular cone. We establish a new efficient spectral decomposition, set up the Jordan algebra associated with the circular cone, and prove that this algebra forms a Euclidean Jordan algebra with a certain inner product. We then show that the cone of squares of … Read more