Constructing QCQP Instances Equivalent to Their SDP Relaxations

General quadratically constrained quadratic programs (QCQPs) are challenging to solve as they are known to be NP-hard. A popular approach to approximating QCQP solutions is to use semidefinite programming (SDP) relaxations. It is well-known that the optimal value η of the SDP relaxation problem bounds the optimal value ζ  of the QCQP from below, i.e., … Read more

Lagrangian Duality for Mixed-Integer Semidefinite Programming: Theory and Algorithms

This paper presents the Lagrangian duality theory for mixed-integer semidefinite programming (MISDP). We derive the Lagrangian dual problem and prove that the resulting Lagrangian dual bound dominates the bound obtained from the continuous relaxation of the MISDP problem. We present a hierarchy of Lagrangian dual bounds by exploiting the theory of integer positive semidefinite matrices … Read more

Stable Set Polytopes with Rank |V(G)|/3 for the Lovász-Schrijver SDP Operator

We study the lift-and-project rank of the stable set polytope of graphs with respect to the Lovász–Schrijver SDP operator \( \text{LS}_+ \) applied to the fractional stable set polytope. In particular, we show that for every positive integer \( \ell \), the smallest possible graph with \( \text{LS}_+ \)-rank \( \ell \) contains \( 3\ell … Read more

Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization

Inspired by the impact of the Goemans-Williamson algorithm on combinatorial optimization, we construct an analogous relax-then-sample strategy for low-rank optimization problems. First, for orthogonally constrained quadratic optimization problems, we derive a semidefinite relaxation and a randomized rounding scheme, which obtains provably near-optimal solutions, mimicking the blueprint from Goemans and Williamson for the Max-Cut problem. We … Read more

Faces of homogeneous cones and applications to homogeneous chordality

A convex cone K is said to be homogeneous if its group of automorphisms acts transitively on its relative interior. Important examples of homogeneous cones include symmetric cones and cones of positive semidefinite (PSD) matrices that follow a sparsity pattern given by a homogeneous chordal graph. Our goal in this paper is to elucidate the … Read more

Sparse Polynomial Matrix Optimization

A polynomial matrix inequality is a statement that a symmetric polynomial matrix is positive semidefinite over a given constraint set. Polynomial matrix optimization concerns minimizing the smallest eigenvalue of a symmetric polynomial matrix subject to a tuple of polynomial matrix inequalities. This work explores the use of sparsity methods in reducing the complexity of sum-of-squares … Read more

Performance Estimation for Smooth and Strongly Convex Sets

We extend recent computer-assisted design and analysis techniques for first-order optimization over structured functions–known as performance estimation–to apply to structured sets. We prove “interpolation theorems” for smooth and strongly convex sets with Slater points and bounded diameter, showing a wide range of extremal questions amount to structured mathematical programs. Prior function interpolation theorems are recovered … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Connectivity via convexity: Bounds on the edge expansion in graphs

Convexification techniques have gained increasing interest over the past decades. In this work, we apply a recently developed convexification technique for fractional programs by He, Liu and Tawarmalani (2024) to the problem of determining the edge expansion of a graph. Computing the edge expansion of a graph is a well-known, difficult combinatorial problem that seeks … Read more

Dual Spectral Projected Gradient Method for Generalized Log-det Semidefinite Programming

Log-det semidefinite programming (SDP) problems are optimization problems that often arise from Gaussian graphic models. A log-det SDP problem with an l1-norm term has been examined in many methods, and the dual spectral projected gradient (DSPG) method by Nakagaki et al.~in 2020 is designed to efficiently solve the dual problem of the log-det SDP by … Read more