A Globally Asymptotically Stable Polynomial Vector Field with Rational Coefficients and no Local Polynomial Lyapunov Function

We give an explicit example of a two-dimensional polynomial vector field of degree seven that has rational coefficients, is globally asymptotically stable, but does not admit an analytic Lyapunov function even locally. Citation Submitted for publication Article Download View A Globally Asymptotically Stable Polynomial Vector Field with Rational Coefficients and no Local Polynomial Lyapunov Function

Optimality conditions and global convergence for nonlinear semidefinite programming

Sequential optimality conditions have played a major role in unifying and extending global convergence results for several classes of algorithms for general nonlinear optimization. In this paper, we extend theses concepts for nonlinear semidefinite programming. We define two sequential optimality conditions for nonlinear semidefinite programming. The first is a natural extension of the so-called Approximate-Karush-Kuhn-Tucker … Read more

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more

On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

Extensions of Yuan’s Lemma to fourth-order tensor system with applications

Yuan’s lemma is a basic proposition on homogeneous quadratic function system. In this paper, we extend Yuan’s lemma to 4th-order tensor system. We first give two gen- eralized definitions of positive semidefinite of 4th-order tensor, and based on them, two extensions of Yuan’s lemma are proposed. We illustrate the difference between our ex- tensions and … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

Sum of squares certificates for stability of planar, homogeneous, and switched systems

We show that existence of a global polynomial Lyapunov function for a homogeneous polynomial vector field or a planar polynomial vector field (under a mild condition) implies existence of a polynomial Lyapunov function that is a sum of squares (sos) and that the negative of its derivative is also a sum of squares. This result … Read more

Maximum-Entropy Sampling and the Boolean Quadric Polytope

We consider a bound for the maximum-entropy sampling problem (MESP) that is based on solving a max-det problem over a relaxation of the Boolean Quadric Polytope (BQP). This approach to MESP was first suggested by Christoph Helmberg over 15 years ago, but has apparently never been further elaborated or computationally investigated. We find that the … Read more

On the local stability of semidefinite relaxations

In this paper we consider a parametric family of polynomial optimization problems over algebraic sets. Although these problems are typically nonconvex, tractable convex relaxations via semidefinite programming (SDP) have been proposed. Often times in applications there is a natural value of the parameters for which the relaxation will solve the problem exactly. We study conditions … Read more