A Note on Semidefinite Representable Reformulations for Two Variants of the Trust-Region Subproblem

Motivated by encouraging numerical results in the literature, in this note we consider two specific variants of the trust-region subproblem and provide exact semidefinite representable reformulations. The first is over the intersection of two balls; the second is over the intersection of a ball and a special second-order conic representable set. Different from the technique … Read more

Linear optimization over homogeneous matrix cones

A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the … Read more

The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which … Read more

Sparse PCA With Multiple Components

Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality-constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods—such as iteratively computing … Read more

A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold

We study semidefinite programming (SDP) relaxations for the NP-hard problem of globally optimizing a quadratic function over the Stiefel manifold. We introduce a strengthened relaxation based on two recent ideas in the literature: (i) a tailored SDP for objectives with a block-diagonal Hessian; (ii) and the use of the Kronecker matrix product to construct SDP relaxations. Using synthetic instances on … Read more

Certifying Global Optimality of AC-OPF Solutions via sparse polynomial optimization

We report the experimental results on certifying 1% global optimality of solutions of AC-OPF instances from PGLiB via the CS-TSSOS hierarchy — a moment-SOS based hierarchy that exploits both correlative and term sparsity, which can provide tighter SDP relaxations than Shor’s relaxation. Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales well with the problem … Read more

Decision Rule Approaches for Pessimistic Bilevel Linear Programs under Moment Ambiguity with Facility Location Applications

We study a pessimistic stochastic bilevel program in the context of sequential two-player games, where the leader makes a binary here-and-now decision, and the follower responds a continuous wait-and-see decision after observing the leader’s action and revelation of uncertainty. Only the information of the mean, covariance, and support is known. We formulate the problem as … Read more

Accelerated first-order methods for a class of semidefinite programs

This paper introduces a new storage-optimal first-order method (FOM), CertSDP, for solving a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we consider, the exact QMP-like SDPs , is characterized by low-rank solutions, a priori knowledge of the restriction of the SDP solution to a small subspace, and standard … Read more

Partitioning through projections: strong SDP bounds for large graph partition problems

The graph partition problem (GPP) aims at clustering the vertex set of a graph into a fixed number of disjoint subsets of given sizes such that the sum of weights of edges joining different sets is minimized. This paper investigates the quality of doubly nonnegative (DNN) relaxations, i.e., relaxations having matrix variables that are both … Read more

Exact SDP relaxations for quadratic programs with bipartite graph structures

For nonconvex quadratically constrained quadratic programs (QCQPs), we first show that, under certain feasibility conditions, the standard semidefinite (SDP) relaxation is exact for QCQPs with bipartite graph structures. The exact optimal solutions are obtained by examining the dual SDP relaxation and the rank of the optimal solution of this dual SDP relaxation under strong duality. … Read more