Improving relaxations for potential-driven network flow problems via acyclic flow orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles … Read more

ASTS Orientations on Undirected Graphs: Structural analysis and enumeration

All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no “dead ends” in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and … Read more

Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as … Read more

Deciding the Feasibility of a Booking in the European Gas Market is coNP-hard

We show that deciding the feasibility of a booking (FB) in the European entry-exit gas market is coNP-hard if a nonlinear potential-based flow model is used. The feasibility of a booking can be characterized by polynomially many load flow scenarios with maximum potential-difference, which are computed by solving nonlinear potential-based flow models. We use this … Read more

The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures … Read more

The Multi-Stop Station Location Problem

We introduce the (directed) multi-stop station location problem. The goal is to install stations such that ordered (multi-)sets of stops can be traversed with respect to range restrictions that are reset whenever a station is visited. Applications arise in telecommunications and transportation, e.g., charging station placement problems. The problem generalizes several network optimization problems such … Read more

Combinatorial Acyclicity Models for Potential-based Flows

Potential-based flows constitute a basic model to represent physical behavior in networks. Under natural assumptions, the flow in such networks must be acyclic. The goal of this paper is to exploit this property for the solution of corresponding optimization problems. To this end, we introduce several combinatorial models for acyclic flows, based on binary variables … Read more

Solving the distance-based critical node problem

In critical node problems, the task is identify a small subset of so-called critical nodes whose deletion maximally degrades a network’s “connectivity” (however that is measured). Problems of this type have been widely studied, e.g., for limiting the spread of infectious diseases. However, existing approaches for solving them have typically been limited to networks having … Read more

Optimizing Drone-Assisted Last-Mile Deliveries: The Vehicle Routing Problem with Flexible Drones

The ever-widening acceptance and deployment of drones in last-mile distribution continue to increase the need for planning and managing the delivery operations involving drones effectively. Motivated by the growing interest towards drone-assisted last-mile transportation, we study a hybrid delivery system in which (multiple) trucks and (multiple) drones operate in tandem. In particular, we introduce the … Read more

A note on the Lasserre hierarchy for different formulations of the maximum independent set problem

In this note, we consider several polynomial optimization formulations of the max- imum independent set problem and the use of the Lasserre hierarchy with these different formulations. We demonstrate using computational experiments that the choice of formulation may have a significant impact on the resulting bounds. We also provide theoretical justifications for the observed behavior. … Read more