A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more

A Shared Mobility Based Framework for Evacuation Planning and Operations under Forecast Uncertainty

To meet evacuation needs from carless populations who may require personalized assistance to evacuate safely, we propose a ridesharing-based evacuation program that recruits volunteer drivers before a disaster strikes, and then matches volunteers with evacuees who need assistance once demand is realized. We optimize resource planning and evacuation operations under uncertain spatiotemporal demand, and construct … Read more

Strategic Positioning of Empty Containers and Minimising Backhauls in Inland Supply Chain Network

An end-to-end supply chain operation for inland logistics requires coordination and planning among various operations of import pickups, export delivery and empty container positioning for reuse and evacuations of unused containers through the ports. A major business goal of all these operations focuses on reducing the transport costs by utilizing maximum network capacity across active … Read more

Priority Based Flow Improvement with Intermediate Storage

Every models in the network flow theory aim to increase flow value from the sources to the sinks and reduce time or cost satisfying the capacity and flow conservation constraints. Recently, the network flow model without flow conservation constraints at the intermediate nodes has been investigated by Pyakurel and Dempe \cite{pyadem:2019}. In this model, if … Read more

Improved optimization models for potential-driven network flow problems via ASTS orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of … Read more

Improving relaxations for potential-driven network flow problems via acyclic flow orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles … Read more

ASTS Orientations on Undirected Graphs: Structural analysis and enumeration

All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no “dead ends” in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and … Read more

Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as … Read more

Deciding the Feasibility of a Booking in the European Gas Market is coNP-hard

We show that deciding the feasibility of a booking (FB) in the European entry-exit gas market is coNP-hard if a nonlinear potential-based flow model is used. The feasibility of a booking can be characterized by polynomially many load flow scenarios with maximum potential-difference, which are computed by solving nonlinear potential-based flow models. We use this … Read more

The Equivalence of Fourier-based and Wasserstein Metrics on Imaging Problems

We investigate properties of some extensions of a class of Fourier-based probability metrics, originally introduced to study convergence to equilibrium for the solution to the spatially homogeneous Boltzmann equation. At difference with the original one, the new Fourier-based metrics are well-defined also for probability distributions with different centers of mass, and for discrete probability measures … Read more