Projected-Search Methods for Bound-Constrained Optimization

Projected-search methods for bound-constrained minimization are based on performing a line search along a continuous piecewise-linear path obtained by projecting a search direction onto the feasible region. A potential benefit of a projected-search method is that many changes to the active set can be made at the cost of computing a single search direction. As … Read more

Strong Evaluation Complexity Bounds for Arbitrary-Order Optimization of Nonconvex Nonsmooth Composite Functions

We introduce the concept of strong high-order approximate minimizers for nonconvex optimization problems. These apply in both standard smooth and composite non-smooth settings, and additionally allow convex or inexpensive constraints. An adaptive regularization algorithm is then proposed to find such approximate minimizers. Under suitable Lipschitz continuity assumptions, whenever the feasible set is convex, it is … Read more

A unified convergence theory for Non monotone Direct Search Methods (DSMs) with extensions \ to DFO with mixed and categorical variables

This paper presents a unified convergence theory for non monotonous Direct Search Methods (DSMs), which embraces several algorithms that have been proposed for the solution of unconstrained and boxed constraints models. This paper shows that these models can be theoretically solved with the same methodology and under the same weak assumptions. All proofs have a … Read more

A Log-Barrier Newton-CG Method for Bound Constrained Optimization with Complexity Guarantees

We describe an algorithm based on a logarithmic barrier function, Newton’s method, and linear conjugate gradients, that obtains an approximate minimizer of a smooth function over the nonnegative orthant. We develop a bound on the complexity of the approach, stated in terms of the required accuracy and the cost of a single gradient evaluation of … Read more

Line search and convergence in bound-constrained optimization

The first part of this paper discusses convergence properties of a new line search method for the optimization of continuously differentiable functions with Lipschitz continuous gradient. The line search uses (apart from the gradient at the current best point) function values only. After deriving properties of the new, in general curved, line search, global convergence … Read more

Convexification of polynomial optimization problems by means of monomial patterns

Convexification is a core technique in global polynomial optimization. Currently, two different approaches compete in practice and in the literature. First, general approaches rooted in nonlinear programming. They are comparitively cheap from a computational point of view, but typically do not provide good (tight) relaxations with respect to bounds for the original problem. Second, approaches … Read more

A globally and linearly convergent PGM for zero-norm regularized quadratic optimization with sphere constraint

This paper is concerned with the zero-norm regularized quadratic optimization with a sphere constraint, which has an important application in sparse eigenvalue problems. For this class of nonconvex and nonsmooth optimization problems, we establish the KL property of exponent 1/2 for its extended-valued objective function and develop a globally and linearly convergent proximal gradient method … Read more

Steplength selection in gradient projection methods for box-constrained quadratic programs

The role of the steplength selection strategies in gradient methods has been widely investigated in the last decades. Starting from the work of Barzilai and Borwein (1988), many efficient steplength rules have been designed, that contributed to make the gradient approaches an effective tool for the large-scale optimization problems arising in important real-world applications. Most … Read more

Accelerating block coordinate descent methods with identification strategies

This work is about active set identification strategies aimed at accelerating block-coordinate descent methods (BCDM) applied to large-scale problems. We start by devising an identification function tailored for bound-constrained composite minimization together with an associated version of the BCDM, called Active BCDM, that is also globally convergent. The identification function gives rise to an efficient … Read more

Optimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimization

Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-order criticality and its evaluation complexity is analyzed as a function of the choice (among existing methods) of an inner algorithm for solving subproblems in … Read more