Simple odd beta-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd beta-cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle … Read more

Parallel Strategies for Direct Multisearch

Direct Multisearch (DMS) is a Derivative-free Optimization class of algorithms suited for computing approximations to the complete Pareto front of a given Multiobjective Optimization problem. It has a well-supported convergence analysis and simple implementations present a good numerical performance, both in academic test sets and in real applications. Recently, this numerical performance was improved with … Read more

Complexity of a Projected Newton-CG Method for Optimization with Bounds

This paper describes a method for solving smooth nonconvex minimization problems subject to bound constraints with good worst-case complexity and practical performance. The method contains elements of two existing methods: the classical gradient projection approach for bound-constrained optimization and a recently proposed Newton-conjugate gradient algorithm for unconstrained nonconvex optimization. Using a new definition of approximate … Read more

Using first-order information in Direct Multisearch for multiobjective optimization

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more

On complexity and convergence of high-order coordinate descent algorithms

Coordinate descent methods with high-order regularized models for box-constrained minimization are introduced. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with … Read more

High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives

A stochastic adaptive regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing strong approximate minimizers of any order for inexpensively constrained smooth optimization problems. For an objective function with Lipschitz continuous p-th derivative in a convex neighbourhood of the feasible set and given an arbitrary optimality order q, it … Read more

Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization

The focus in this paper is interior-point methods for bound-constrained nonlinear optimization where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. … Read more

Projected-Search Methods for Bound-Constrained Optimization

Projected-search methods for bound-constrained minimization are based on performing a line search along a continuous piecewise-linear path obtained by projecting a search direction onto the feasible region. A potential benefit of a projected-search method is that many changes to the active set can be made at the cost of computing a single search direction. As … Read more

Strong Evaluation Complexity Bounds for Arbitrary-Order Optimization of Nonconvex Nonsmooth Composite Functions

We introduce the concept of strong high-order approximate minimizers for nonconvex optimization problems. These apply in both standard smooth and composite non-smooth settings, and additionally allow convex or inexpensive constraints. An adaptive regularization algorithm is then proposed to find such approximate minimizers. Under suitable Lipschitz continuity assumptions, whenever the feasible set is convex, it is … Read more

A unified convergence theory for Non monotone Direct Search Methods (DSMs) with extensions \ to DFO with mixed and categorical variables

This paper presents a unified convergence theory for non monotonous Direct Search Methods (DSMs), which embraces several algorithms that have been proposed for the solution of unconstrained and boxed constraints models. This paper shows that these models can be theoretically solved with the same methodology and under the same weak assumptions. All proofs have a … Read more