A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis

The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, options pricing in finance, constructing quadrature schemes for numerical integration, and distributionally robust optimization. A usual solution approach, … Read more

Adaptive regularization algorithms with inexact evaluations for nonconvex optimization

A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is beta-H\”{o}lder continuous. It features a … Read more

Deterministic upper bounds in global minimization with nonlinear equality constraints

We address the problem of deterministically determining upper bounds in continuous non-convex global minimization of box-constrained problems with equality constraints. These upper bounds are important for the termination of spatial branch-and-bound algorithms. Our method is based on the theorem of Miranda which helps to ensure the existence of feasible points in certain boxes. Then, the … Read more

Sharp worst-case evaluation complexity bounds for arbitrary-order nonconvex optimization with inexpensive constraints

We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems with general inexpensive constraints, i.e.\ problems where the cost of evaluating/enforcing of the (possibly nonconvex or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These bounds unify, extend or improve all known upper and lower complexity bounds … Read more

Inexact alternating projections on nonconvex sets

Given two arbitrary closed sets in Euclidean space, a simple transversality condition guarantees that the method of alternating projections converges locally, at linear rate, to a point in the intersection. Exact projection onto nonconvex sets is typically intractable, but we show that computationally-cheap inexact projections may suffice instead. In particular, if one set is defined … Read more

Sparse Mean-Reverting Portfolios via Penalized Likelihood Optimization

An optimization approach is proposed to construct sparse portfolios with mean-reverting price behaviors. Our objectives are threefold: (i) design a multi-asset long-short portfolio that best fits an Ornstein-Uhlenbeck process in terms of maximum likelihood, (ii) select portfolios with desirable characteristics of high mean reversion and low variance though penalization, and (iii) select a parsimonious portfolio … Read more

Numerical Solution of Optimal Control Problems with Switches, Switching Costs and Jumps

In this article, we present a framework for the numerical solution of optimal control problems, constrained by ordinary differential equations which can run in (finitely many) different modes, where a change of modes leads to additional switching cost in the cost function, and whenever the system changes its mode, jumps in the differential states are … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

We study the class of nonsmooth nonconvex problems in which the objective is to minimize the difference between a continuously differentiable function (possibly nonconvex) and a convex (possibly nonsmooth) function over a convex polytope. This general class contains many types of problems, including difference of convex functions (DC) problems, and as such, can be used … Read more

Non-monotone Inexact Restoration Method for nonlinear programming

This paper deals with a new variant of the Inexact Restoration Method of Fischer and Friedlander (COAP, 46, pp. 333-346, 2010). We propose an algorithm that replaces the monotone line-search performed in the tangent phase (with regard to the penalty function) by a non-monotone one. Con- vergence to feasible points satisfying the approximate gradient projection … Read more

Decision Diagram Decomposition for Quadratically Constrained Binary Optimization

In recent years the use of decision diagrams within the context of discrete optimization has proliferated. This paper continues this expansion by proposing the use of decision diagrams for modeling and solving binary optimization problems with quadratic constraints. The model proposes the use of multiple decision diagrams to decompose a quadratic matrix so that each … Read more