A Flexible Iterative Solver for Nonconvex, Equality-Constrained Quadratic Subproblems

We present an iterative primal-dual solver for nonconvex equality-constrained quadratic optimization subproblems. The solver constructs the primal and dual trial steps from the subspace generated by the generalized Arnoldi procedure used in flexible GMRES (FGMRES). This permits the use of a wide range of preconditioners for the primal-dual system. In contrast with FGMRES, the proposed … Read more

Weak and Strong Superiorization: Between Feasibility-Seeking and Minimization

We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

Normally admissible stratifications and calculation of normal cones to a finite union of polyhedral sets

This paper considers computation of Fr\’echet and limiting normal cones to a finite union of polyhedra. To this aim, we introduce a new concept of normally admissible stratification which is convenient for calculations of such cones and provide its basic properties. We further derive formulas for the above mentioned cones and compare our approach to … Read more

On fast trust region methods for quadratic models with linear constraints

Quadratic models Q_k(.) of the objective function F(.) are used by many successful iterative algorithms for minimization, where k is the iteration number. Given the vector of variables x_k, a new vector x_{k+1} may be calculated that satisfies Q_k(x_{k+1}) < Q_k(x_k), in the hope that it provides the reduction F(x_{k+1}) < F(x_k). Trust region methods ... Read more

A Feasible Direction Algorithm for Nonlinear Second-Order Cone Optimization Problems

In this work we present a new feasible direction algorithm for solving smooth nonlinear second-order cone programs. These problems consist of minimizing a nonlinear di erentiable objective function subject to some nonlinear second-order cone constraints. Given a point interior to the feasible set de nfined by the nonlinear constraints, the proposed approach computes a feasible and descent … Read more

Adaptive Augmented Lagrangian Methods: Algorithms and Practical Numerical Experience

In this paper, we consider augmented Lagrangian (AL) algorithms for solving large-scale nonlinear optimization problems that execute adaptive strategies for updating the penalty parameter. Our work is motivated by the recently proposed adaptive AL trust region method by Curtis et al. [An adaptive augmented Lagrangian method for large-scale constrained optimization, Math. Program. 152 (2015), pp.201–245.]. … Read more

On Second Order Optimality Conditions in Nonlinear Optimization

In this work we present new weak conditions that ensure the validity of necessary second order optimality conditions (SOC) for nonlinear optimization. We are able to prove that weak and strong SOCs hold for all Lagrange multipliers using Abadie-type assumptions. We also prove weak and strong SOCs for at least one Lagrange multiplier imposing the … Read more

A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more