Global optimal control with the direct multiple shooting method

We propose to solve global optimal control problems with a new algorithm that is based on Bock’s direct multiple shooting method. We provide conditions and numerical evidence for a significant overall runtime reduction compared to the standard single shooting approach. Citation Optimal Control Applications and Methods, Vol. 39 (2), pp. 449–470, 2017 DOI 10.1002/oca.2324 Article … Read more

Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis

Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its … Read more

Mathematical Programs with Equilibrium Constraints: A sequential optimality condition, new constraint qualifications and algorithmic consequences.

Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, are a difficult class of constrained optimization problems. The feasible set has a very special structure and violates most of the standard constraint qualifications (CQs). Thus, the Karush-Kuhn-Tucker (KKT) conditions are not necessarily satisfied by minimizers and the convergence assumptions of many methods for solving … Read more

Algorithms for stochastic optimization with expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with an expectation constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the expectation constraint on devision variables. We show that … Read more

Approximation Properties and Tight Bounds for Constrained Mixed-Integer Optimal Control

We extend recent work on mixed-integer nonlinear optimal control prob- lems (MIOCPs) to the case of integer control functions subject to constraints. Promi- nent examples of such systems include problems with restrictions on the number of switches permitted, or problems that minimize switch cost. We extend a theorem due to [Sager et al., Math. Prog. … Read more

A predictor-corrector path-following algorithm for dual-degenerate parametric optimization problems

Most path-following algorithms for tracing a solution path of a parametric nonlinear optimization problem are only certifiably convergent under strong regularity assumptions about the problem functions, in particular, the linear independence of the constraint gradients at the solutions, which implies a unique multiplier solution for every nonlinear program. In this paper we propose and prove … Read more

A new algebraic analysis to linear mixed models

This article presents a new investigation to the linear mixed model $\by = \bX \bbe + \bZ\bga + \bve$ with fixed effect $\bX\bbe$ and random effect $\bZ\bga$ under a general assumption via some novel algebraic tools in matrix theory, and reveals a variety of deep and profound properties hidden behind the linear mixed model. We … Read more

Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation … Read more

A Second-Order Cone Based Approach for Solving the Trust Region Subproblem and Its Variants

We study the trust region subproblem (TRS) of minimizing a nonconvex quadratic function over the unit ball with additional conic constraints. Despite having a nonconvex objective, it is known that the TRS and a number of its variants are polynomial-time solvable. In this paper, we follow a second-order cone based approach to derive an exact … Read more

On Sampling Rates in Simulation-Based Recursions

We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are Simulation Optimization and … Read more