The Inexact Spectral Bundle Method for Convex Quadratic Semidefinite Programming

We present an inexact spectral bundle method for solving convex quadratic semidefinite optimization problems. This method is a first-order method, hence requires much less computational cost each iteration than second-order approaches such as interior-point methods. In each iteration of our method, we solve an eigenvalue minimization problem inexactly, and solve a small convex quadratic semidefinite … Read more

NONSMOOTH OPTIMIZATION OVER THE (WEAKLY OR PROPERLY) PARETO SET OF A LINEAR-QUADRATIC MULTI-OBJECTIVE CONTROL PROBLEM : EXPLICIT OPTIMALITY CONDITIONS

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated to a multiobjective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting, i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst different applications, our problem may … Read more

On the oracle complexity of first-order and derivative-free algorithms for smooth nonconvex minimization

The (optimal) function/gradient evaluations worst-case complexity analysis available for the Adaptive Regularizations algorithms with Cubics (ARC) for nonconvex smooth unconstrained optimization is extended to finite-difference versions of this algorithm, yielding complexity bounds for first-order and derivative free methods applied on the same problem class. A comparison with the results obtained for derivative-free methods by Vicente … Read more

A quasi-Newton strategy for the sSQP method for variational inequality and optimization problems

The quasi-Newton strategy presented in this paper preserves one of the most important features of the stabilized Sequential Quadratic Programming method, the local convergence without constraint qualifications assumptions. It is known that the primal-dual sequence converges quadratically assuming only the second-order sufficient condition. In this work, we show that if the matrices are updated by … Read more

Total variation superiorization schemes in proton computed tomography image reconstruction

Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, noise in the reconstructed image increases with successive iterations. In the current work, we investigated the use of total variation superiorization (TVS) … Read more

Methods for Convex and General Quadratic Programming

Computational methods are considered for finding a point that satisfies the second-order necessary conditions for a general (possibly nonconvex) quadratic program (QP). The first part of the paper considers the formulation and analysis of an active-set method for a generic QP with both equality and inequality constraints. The method uses a search direction that is … Read more

An Introduction to a Class of Matrix Cone Programming

In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently found many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to … Read more

Burer’s Key Assumption for Semidefinite and Doubly Nonnegative Relaxations

Burer has shown that completely positive relaxations of nonconvex quadratic programs with nonnegative and binary variables are exact when the binary variables satisfy a so-called key assumption. Here we show that introducing binary variables to obtain an equivalent problem that satisfies the key assumption will not improve the semidefinite relaxation, and only marginally improve the … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

The Split Variational Inequality Problem

We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert … Read more