Improved Approximation Bound for Quadratic Optimization Problems with Orthogonality Constraints

In this paper we consider approximation algorithms for a class of quadratic optimization problems that contain orthogonality constraints, i.e. constraints of the form $X^TX=I$, where $X \in {\mathbb R}^{m \times n}$ is the optimization variable. Such class of problems, which we denote by (QP-OC), is quite general and captures several well–studied problems in the literature … Read more

Multi-Secant Equations, Approximate Invariant Subspaces and Multigrid Optimization

New approximate secant equations are shown to result from the knowledge of (problem dependent) invariant subspace information, which in turn suggests improvements in quasi-Newton methods for unconstrained minimization. It is also shown that this type of information may often be extracted from the multigrid structure of discretized infinite dimensional problems. A new limited-memory BFGS using … Read more

Support Vector Regression for imprecise data

In this work, a regression problem is studied where the elements of the database are sets with certain geometrical properties. In particular, our model can be applied to handle data affected by some kind of noise or uncertainty and interval-valued data, and databases with missing values as well. The proposed formulation is based on the … Read more

Two theoretical results for sequential semidefinite programming

We examine the local convergence of a sequential semidefinite programming approach for solving nonlinear programs with nonlinear semidefiniteness constraints. Known convergence results are extended to slightly weaker second order sufficient conditions and the resulting subproblems are shown to have local convexity properties that imply a weak form of self-concordance of the barrier subproblems. Citation Preprint, … Read more

A Retrospective Trust-Region Method for Unconstrained Optimization

We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to … Read more

Adaptive Constraint Reduction for Training Support Vector Machines

A support vector machine (SVM) determines whether a given observed pattern lies in a particular class. The decision is based on prior training of the SVM on a set of patterns with known classification, and training is achieved by solving a convex quadratic programming problem. Since there are typically a large number of training patterns, … Read more

Adjoint Broyden a la GMRES

It is shown that a compact storage implementation of a quasi-Newton method based on the adjoint Broyden update reduces in the affine case exactly to the well established GMRES procedure. Generally, storage and linear algebra effort per step are small multiples of n k, where n is the number of variables and k the number … Read more

Relaxing the Optimality Conditions of Box QP

We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the first- and second-order necessary optimality conditions. We compare these relaxations with a basic semidefinite relaxation due to Shor, particularly in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger. We … Read more

Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy

A method for generating a sequence of intensity-modulated radiation therapy step-and-shoot plans with increasing number of segments is presented. The objectives are to generate high-quality plans with few, large and regular segments, and to make the planning process more intuitive. The proposed method combines segment generation with direct step-and-shoot optimization, where leaf positions and segment … Read more

Bracketing an Optima in Univariate Optimization

In this article, we consider some problems of bracketing an optimum point for a real-valued, single variable function. We show that, no method, satisfying certain assumptions and requiring a bounded number of function evaluations, can exist to bracket the minimum point of a unimodal function. A similar result is given also for the problem of … Read more