Computable representations for convex hulls of low-dimensional quadratic forms

Let C be the convex hull of points {(1;x)(1,x’)| x \in F\subset R^n}. Representing or approximating C is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. If n

New Adaptive Stepsize Selections in Gradient Methods

This paper deals with gradient methods for minimizing n-dimensional strictly convex quadratic functions. Two new adaptive stepsize selection rules are presented and some key properties are proved. Practical insights on the effectiveness of the proposed techniques are given by a numerical comparison with the Barzilai-Borwein (BB) method, the cyclic/adaptive BB methods and two recent monotone … Read more

On diagonally-relaxed orthogonal projection methods

We propose and study a block-iterative projections method for solving linear equations and/or inequalities. The method allows diagonal component-wise relaxation in conjunction with orthogonal projections onto the individual hyperplanes of the system, and is thus called diagonally-relaxed orthogonal projections (DROP). Diagonal relaxation has proven useful in accelerating the initial convergence of simultaneous and block-iterative projection … Read more

New class of limited-memory variationally-derived variable metric methods

A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported. Citation Technical Report V-973. Prague, ICS AS CR 2006. Article Download View New class of limited-memory variationally-derived variable metric methods

Finding a point in the relative interior of a polyhedron

A new initialization or `Phase I’ strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies the existence of the central path … Read more

Global convergence of slanting filter methods for nonlinear programming

In this paper we present a general algorithm for nonlinear programming which uses a slanting filter criterion for accepting the new iterates. Independently of how these iterates are computed, we prove that all accumulation points of the sequence generated by the algorithm are feasible. Computing the new iterates by the inexact restoration method, we prove … Read more

A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

SPECTRAL STOCHASTIC FINITE-ELEMENT METHODS FOR PARAMETRIC CONSTRAINED OPTIMIZATION PROBLEMS

We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral stochastic finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem … Read more

On Second-Order Optimality Conditions for Nonlinear Programming

Necessary Optimality Conditions for Nonlinear Programming are discussed in the present research. A new Second-Order condition is given, which depends on a weak constant rank constraint requirement. We show that practical and publicly available algorithms (www.ime.usp.br/~egbirgin/tango) of Augmented Lagrangian type converge, after slight modifications, to stationary points defined by the new condition. Article Download View … Read more

An Inexact SQP Method for Equality Constrained Optimization

We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved … Read more