Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming

We introduce a framework in which updating rules for the barrier parameter in primal-dual interior-point methods become dynamic. The original primal-dual system is augmented to incorporate explicitly an updating function. A Newton step for the augmented system gives a primal-dual Newton step and also a step in the barrier parameter. Based on local information and … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more

SOS approximation of polynomials nonnegative on a real algebraic set

Let $V\subset R^n$ be a real algebraic set described by finitely many polynomials equations $g_j(x)=0,j\in J$, and let $f$ be a real polynomial, nonnegative on $V$. We show that for every $\epsilon>0$, there exist nonnegative scalars $\{\lambda_j\}_{j\in J}$ such that, for all $r$ sufficiently large, $f+\epsilon\theta_r+\sum_{j\in J} \lambda_j g_j^2$ is a sum of squares. Here, … Read more

Nonlinear optimal control: Numerical approximations via moments and LMI-relaxations

We consider the class of nonlinear optimal control problems with all data (differential equation, state and control constraints, cost) being polynomials. We provide a simple hierarchy of LMI-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Preliminary results show that good approximations are obtained with few moments. CitationLAAS report … Read more

A sum of squares approximation of nonnegative polynomials

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$. CitationSIAM J. Optimization 16 … Read more

A Homogeneous Model for Mixed Complementarity Problems over Symmetric Cones

In this paper, we propose a homogeneous model for solving monotone mixed complementarity problems over symmetric cones, by extending the results in \cite{YOSHISE04} for standard form of the problems. We show that the extended model inherits the following desirable features: (a) A path exists, is bounded and has a trivial starting point without any regularity … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Blind Source Separation using Relative Newton Method combined with Smoothing Method of Multipliers

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of … Read more

Variational Two-electron Reduced Density Matrix Theory for Many-electron Atoms and Molecules: Implementation of the Spin- and Symmetry-adapted T2 Condition through First-order Semidefinite Programming

The energy and properties of a many-electron atom or molecule may be directly computed from a variational optimization of a two-electron reduced density matrix (2-RDM) that is constrained to represent many-electron quantum systems. In this paper we implement a variational 2-RDM method with a representability constraint, known as the $T_2$ condition. The optimization of the … Read more

Iterative Solution of Augmented Systems Arising in Interior Methods

Iterative methods are proposed for certain augmented systems of linear equations that arise in interior methods for general nonlinear optimization. Interior methods define a sequence of KKT equations that represent the symmetrized (but indefinite) equations associated with Newton’s method for a point satisfying the perturbed optimality conditions. These equations involve both the primal and dual … Read more