Inexact Derivative-Free Optimization for Bilevel Learning

Variational regularization techniques are dominant in the field of mathematical imaging. A drawback of these techniques is that they are dependent on a number of parameters which have to be set by the user. A by now common strategy to resolve this issue is to learn these parameters from data. While mathematically appealing this strategy … Read more

Mixed-Integer Optimal Control for Multimodal Chromatography

Multimodal chromatography is a powerful tool in the downstream processing of biopharmaceuticals. To fully benefit from this technology, an efficient process strategy must be determined beforehand. To facilitate this task, we employ a recent mechanistic model for multimodal chromatography, which takes salt concentration and pH into account, and we present a mathematical framework for the … Read more

Cycle-based formulations in Distance Geometry

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision … Read more

Optimality conditions in discrete-continuous nonlinear optimization

This paper presents necessary and sufficient optimality conditions for discrete-continuous nonlinear optimization problems including mixed-integer nonlinear problems. This theory does not utilize an extension of the Lagrange theory of continuous optimization but it works with certain max functionals for a separation of two sets where one of them is nonconvex. These functionals have the advantage … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

A Line-Search Descent Algorithm for Strict Saddle Functions with Complexity Guarantees

We describe a line-search algorithm which achieves the best-known worst-case complexity results for problems with a certain “strict saddle” property that has been observed to hold in low-rank matrix optimization problems. Our algorithm is adaptive, in the sense that it makes use of backtracking line searches and does not require prior knowledge of the parameters … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

This work proposes a progressive manifold identification approach for distributed optimization with sound theoretical justifications to greatly reduce both the rounds of communication and the bytes communicated per round for partly-smooth regularized problems such as the $\ell_1$- and group-LASSO-regularized ones. Our two-stage method first uses an inexact proximal quasi-Newton method to iteratively identify a sequence … Read more

Proximity in Concave Integer Quadratic Programming

A classic result by Cook, Gerards, Schrijver, and Tardos provides an upper bound of n∆ on the proximity of optimal solutions of an Integer Linear Programming problem and its standard linear relaxation. In this bound, n is the number of variables and ∆ denotes the maximum of the absolute values of the subdeterminants of the … Read more

Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity

We study a model for adversarial classification based on distributionally robust chance constraints. We show that under Wasserstein ambiguity, the model aims to minimize the conditional value-at-risk of the distance to misclassification, and we explore links to adversarial classification models proposed earlier and to maximum-margin classifiers. We also provide a reformulation of the distributionally robust … Read more