A Hybrid Gradient Method for Strictly Convex Quadratic Programming

In this paper, a reliable hybrid algorithm for solving convex quadratic minimization problems is presented. At each iteration, two points are computed: first, an auxiliary point $\dot{x}_k$ is generated by performing a gradient step equipped with an optimal steplength, then, the next iterate $x_{k+1}$ is obtained through a weighted sum of $\dot{x}_k$ with the penultimate … Read more

Sum theorems for maximal monotone operators under weak compactness conditions

This note presents a summary of our most recent results concerning the maximal monotonicity of the sum of two maximal monotone operators defined in a locally convex space under the classical interiority qualification condition when one of their domains or ranges has a weak relative compactness property. CitationNAArticleDownload View PDF

Coordinate Descent Without Coordinates: Tangent Subspace Descent on Riemannian Manifolds

We extend coordinate descent to manifold domains, and provide convergence analyses for geodesically convex and non-convex smooth objective functions. Our key insight is to draw an analogy between coordinate blocks in Euclidean space and tangent subspaces of a manifold. Hence, our method is called tangent subspace descent (TSD). The core principle behind ensuring convergence of … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

A bundle method for nonsmooth DC programming with application to chance-constrained problems

This work considers nonsmooth and nonconvex optimization problems whose objective and constraint functions are defined by difference-of-convex (DC) functions. We consider an infeasible bundle method based on the so-called improvement functions to compute critical points for problems of this class. Our algorithm neither employs penalization techniques nor solves subproblems with linearized constraints. The approach, which … Read more

On convex hulls of epigraphs of QCQPs

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more

A Finitely Convergent Disjunctive Cutting Plane Algorithm for Bilinear Programming

In this paper we present and analyze a finitely-convergent disjunctive cutting plane algorithm to obtain an \(\epsilon\)-optimal solution or detect infeasibility of a general nonconvex continuous bilinear program. While the cutting planes are obtained in a manner similar to Saxena, Bonami, and Lee [Math. Prog. 130: 359–413, 2011] and Fampa and Lee [J. Global Optim. … Read more

Compact Representations of Structured BFGS Matrices

For general large-scale optimization problems compact representations exist in which recursive quasi-Newton update formulas are represented as compact matrix factorizations. For problems in which the objective function contains additional structure, so-called structured quasi-Newton methods exploit available second-derivative information and approximate unavailable second derivatives. This article develops the compact representations of two structured Broyden-Fletcher-Goldfarb-Shanno update formulas. … Read more

Sequential Convexification of a Bilinear Set

We present a sequential convexification procedure to derive, in the limit, a set arbitrary close to the convex hull of $\epsilon$-feasible solutions to a general nonconvex continuous bilinear set. Recognizing that bilinear terms can be represented with a finite number nonlinear nonconvex constraints in the lifted matrix space, our procedure performs a sequential convexification with … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more