A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications

For a symmetric positive semidefinite linear system of equations $\mathcal{Q} {\bf x} = {\bf b}$, where ${\bf x} = (x_1,\ldots,x_s)$ is partitioned into $s$ blocks, with $s \geq 2$, we show that each cycle of the classical block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic programming (QP) problem but added with an … Read more

Solving sparse polynomial optimization problems with chordal structure using the sparse, bounded-degree sum-of-squares hierarchy

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal value. In this paper, we modify the hierarchy to deal with problems containing equality … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

A Condensing Algorithm for Nonlinear MPC with a Quadratic Runtime in Horizon Length

A large number of practical algorithms for Optimal Control Problems (OCP) relies on a so-called condensing procedure to exploit the given structure in the quadratic programming (QP) subproblems. While the established structure-exploiting condensing algorithm is of cubic complexity in the horizon length, in this technical note we propose a novel algorithm that is only of … Read more

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem

We describe trlib, a library that implements a Variant of Gould’s Generalized Lanczos method (Gould et al. in SIAM J. Opt. 9(2), 504–525, 1999) for solving the trust region problem. Our implementation has several distinct features that set it apart from preexisting ones. We implement both conjugate gradient (CG) and Lanczos iterations for assembly of … Read more

BFGS-like updates of constraint preconditioners for sequences of KKT linear systems

We focus on efficient preconditioning techniques for sequences of KKT linear systems arising from the interior point solution of large convex quadratic programming problems. Constraint Preconditioners (CPs), though very effective in accelerating Krylov methods in the solution of KKT systems, have a very high computational cost in some instances, because their factorization may be the … Read more

Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

A recursive semi-smooth Newton method for linear complementarity problems

A primal feasible active set method is presented for finding the unique solution of a Linear Complementarity Problem (LCP) with a P-matrix, which extends the globally convergent active set method for strictly convex quadratic problems with simple bounds proposed by [P. Hungerlaender and F. Rendl. A feasible active set method for strictly convex problems with … Read more

An Infeasible Active Set Method with Combinatorial Line Search for Convex Quadratic Problems with Bound Constraints

The minimization of a convex quadratic function under bound constraints is a fundamental building block for more complicated optimization problems. The active-set method introduced by [M. Bergounioux, K. Ito, and K. Kunisch. Primal-Dual Strategy for Constrained Optimal Control Problems. SIAM Journal on Control and Optimization, 37:1176–1194, 1999.] and [M. Bergounioux, M. Haddou, M. Hintermüller, and … Read more

A new branch-and-bound algorithm for standard quadratic programming problems

In this paper we propose convex and LP bounds for Standard Quadratic Programming (StQP) problems and employ them within a branch-and-bound approach. We first compare different bounding strategies for StQPs in terms both of the quality of the bound and of the computation times. It turns out that the polyhedral bounding strategy is the best … Read more