Use of static surrogates in hyperparameter optimization

Optimizing the hyperparameters and architecture of a neural network is a long yet necessary phase in the development of any new application. This consuming process can benefit from the elaboration of strategies designed to quickly discard low quality configurations and focus on more promising candidates. This work aims at enhancing HyperNOMAD, a library that adapts … Read more

Improving Column-Generation for Vehicle Routing Problems via Random Coloring and Parallelization

We consider a variant of the Vehicle Routing Problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation based linear-programming relaxation … Read more

Controllable Transmission Networks UnderDemand Uncertainty with Modular FACTS

The transmission system operators (TSOs) are responsible to provide secure and efficient access to the transmission system for all stakeholders. This task is gradually getting challenging due to the demand growth, demand uncertainty, rapid changes in generation mix, and market policies. Traditionally, the TSOs try to maximize the technical performance of the transmission network via … Read more

A Novel Cooperative Multi-search Benders Decomposition for Solving the Hydrothermal Unit-Commitment Problem

Renewable energy and modernization of power operation demand Independent System Operators (ISOs) to solve ever more complex and larger programming problems to securely and economically schedule power resources. A key step in the scheduling process is the unit commitment (UC). In a hydro-dominated system, this process also involves managing reservoirs and is called hydrothermal UC … Read more

GALINI: An extensible mixed-integer quadratically-constrained optimization solver

We present GALINI, an open source solver for nonconvex mixed-integer quadratically-constrained quadratic programs formulated with the Python algebraic modeling library Pyomo. GALINI uses Pyomo to represent optimization problems and leverages the existing library ecosystem to implement different parts of the solver. GALINI includes a generic branch \& bound algorithm that can be use develop new … Read more

Projection onto the exponential cone: a univariate root-finding problem

The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modeling. In this paper we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a … Read more

Learning To Scale Mixed-Integer Programs

Many practical applications require the solution of numerically challenging linear programs (LPs) and mixed-integer programs (MIPs). Scaling is a widely used preconditioning technique that aims at reducing the error propagation of the involved linear systems, thereby improving the numerical behavior of the dual simplex algorithm and, consequently, LP-based branch-and-bound. A reliable scaling method often makes … Read more

A Distributed and Secure Algorithm for Computing Dominant SVD Based on Projection Splitting

In this paper, we propose and study a distributed and secure algorithm for computing dominant (or truncated) singular value decompositions (SVD) of large and distributed data matrices. We consider the scenario where each node privately holds a subset of columns and only exchanges “safe” information with other nodes in a collaborative effort to calculate a … Read more

Finding the Sequence of Largest Small n-Polygons by Numerical Optimization

LSP(n), the largest small polygon with n vertices, is the polygon of unit diameter that has maximal area A(n). It is known that for all odd values n≥3, LSP(n) is the regular n-polygon; however, this statement is not valid for even values of n. Finding the polygon LSP(n) and A(n) for even values n≥6 has … Read more

JuDGE.jl: a Julia package for optimizing capacity expansion

We present JuDGE.jl, an open-source Julia package for solving multistage stochastic capacity expansion problems using Dantzig-Wolfe decomposition. Models for JuDGE.jl are built using JuMP, the algebraic modelling language in Julia, and solved by repeatedly applying mixed-integer programming. We illustrate JuDGE.jl by formulating and solving a toy knapsack problem, and demonstrate the performance of JuDGE.jl on … Read more