A Minimalist Bayesian Framework for Stochastic Optimization

The Bayesian paradigm offers principled tools for sequential decision-making under uncertainty, but its reliance on a probabilistic model for all parameters can hinder the incorporation of complex structural constraints. We introduce a minimalist Bayesian framework that places a prior only on the component of interest, such as the location of the optimum. Nuisance parameters are … Read more

Active-Set Identification in Noisy and Stochastic Optimization

Identifying active constraints from a point near an optimal solution is important both theoretically and practically in constrained continuous optimization, as it can help identify optimal Lagrange multipliers and essentially reduces an inequality-constrained problem to an equality-constrained one. Traditional active-set identification guarantees have been proved under assumptions of smoothness and constraint qualifications, and assume exact … Read more

A Data-Driven County-Level Budget Allocation Model for Opioid Crisis Management: Insights from West Virginia

The opioid crisis has remained a major public health challenge in the United States for many years. This study develops a data-driven decision support framework to guide policymakers in allocating county-level budgets across multiple expenditure categories in order to address the opioid crisis. We compile and curate a detailed dataset on fiscal policy and opioid-related … Read more

Pareto-optimal trees and Pareto forest: a bi-objective optimization model for binary classification

As inherently transparent models, classification trees play a central role in interpretable machine learning by providing easily traceable decision paths that allow users to understand how input features contribute to specific predictions. In this work, we introduce a new class of interpretable binary classification models, named Pareto-optimal trees, which aim at combining the complementary strengths … Read more

On the Convergence and Complexity of Proximal Gradient and Accelerated Proximal Gradient Methods under Adaptive Gradient Estimation

In this paper, we propose a proximal gradient method and an accelerated proximal gradient method for solving composite optimization problems, where the objective function is the sum of a smooth and a convex, possibly nonsmooth, function. We consider settings where the smooth component is either a finite-sum function or an expectation of a stochastic function, … Read more

Faster stochastic cubic regularized Newton methods with momentum

Cubic regularized Newton (CRN) methods have attracted significant research interest because they offer stronger solution guarantees and lower iteration complexity. With the rise of the big-data era, there is growing interest in developing stochastic cubic regularized Newton (SCRN) methods that do not require exact gradient and Hessian evaluations. In this paper, we propose faster SCRN … Read more

Stochastic Approximation with Block Coordinate Optimal Stepsizes

We consider stochastic approximation with block-coordinate stepsizes and propose adaptive stepsize rules that aim to minimize the expected distance from the next iterate to an optimal point. These stepsize rules employ online estimates of the second moment of the search direction along each block coordinate. The popular Adam algorithm can be interpreted as a particular … Read more

Recursive Bound-Constrained AdaGrad with Applications to Multilevel and Domain Decomposition Minimization

Two OFFO (Objective-Function Free Optimization) noise tolerant algorithms are presented that handle bound constraints, inexact gradients and use second-order information when available. The first is a multi-level method exploiting a hierarchical description of the problem and the second is a domain-decomposition method covering the standard addditive Schwarz decompositions. Both are generalizations of the first-order AdaGrad … Read more

A Randomized Algorithm for Sparse PCA based on the Basic SDP Relaxation

Sparse Principal Component Analysis (SPCA) is a fundamental technique for dimensionality reduction, and is NP-hard. In this paper, we introduce a randomized approximation algorithm for SPCA, which is based on the basic SDP relaxation. Our algorithm has an approximation ratio of at most the sparsity constant with high probability, if called enough times. Under a … Read more

Constrained Enumeration of Lucky Tickets: Prime Digits, Uniqueness, and Greedy Heuristics

We revisit the classical Lucky Ticket (LT) enumeration problem, in which an even-digit number is called lucky if the sum of the digits of its first half equals to that of its second half. We introduce two new subclasses — SuperLucky Tickets (SLTs), where all digits are distinct, and LuckyPrime Tickets (LPTs), where all digits … Read more