Parameter-free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems

To facilitate fast solution of deterministic dynamic programming problems, we present a parameter-free variation of the Sampled Fictitious Play (SFP) algorithm. Its random tie-braking procedure imparts a natural randomness to the algorithm which prevents it from “getting stuck” at a local optimal solution and allows the discovery of an optimal path in a finite number … Read more

Simplex Algorithm for Countable-state Discounted Markov Decision Processes

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are inventory management and queueing control problems in which there is no specific limit on the size of inventory or queue. Existing solution methods obtain a sequence of policies that converges to optimality … Read more

Process-Based Risk Measures for Observable and Partially Observable Discrete-Time Controlled Systems

For controlled discrete-time stochastic processes we introduce a new class of dynamic risk measures, which we call process-based. Their main features are that they measure risk of processes that are functions of the history of the base process. We introduce a new concept of conditional stochastic time consistency and we derive the structure of process-based … Read more

Information Relaxation Bounds for Infinite Horizon Markov Decision Processes

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these constraints. In this paper, we study infinite horizon DPs with discounted costs and consider … Read more

Singularly Perturbed Markov Decision Processes: A Multiresolution Algorithm

Singular perturbation techniques allow the derivation of an aggregate model whose solution is asymptotically optimal for Markov Decision Processes with strong and weak interactions. We develop an algorithm that takes advantage of the asymptotic optimality of the aggregate model in order to compute the solution of the original model with theoretically better complexity than conventional … Read more

Robust Data-Driven Dynamic Programming

In stochastic optimal control the distribution of the exogenous noise is typically unknown and must be inferred from limited data before dynamic programming (DP)-based solution schemes can be applied. If the conditional expectations in the DP recursions are estimated via kernel regression, however, the historical sample paths enter the solution procedure directly as they determine … Read more

Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems — including multi-constraint variants — by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without … Read more

Information Relaxations, Duality, and Convex Dynamic Programs

We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs), following Brown, Smith, and Sun (2010). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these nonanticipativity constraints. In this paper, we study DPs that have a convex structure and … Read more

Exact Algorithms for Arc and Node Routing Problems

Routing problems stand among the hardest combinatorial problems to find high quality bounds or to prove new optimal solutions. In this thesis, we tackle the Capacitated Arc Routing Problem (CARP) and the Generalized Vehicle Routing Problem (GVRP). For both problems, there are a set of customers spread over a given graph, where each customer has … Read more

Fully Polynomial Time Approximation Schemes for Stochastic Dynamic Programs

We present a framework for obtaining Fully Polynomial Time Approximation Schemes (FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period cost functions. This framework is developed through the establishment of two sets of computational rules, namely the Calculus of K-approximation Functions and the Calculus of K-approximation Sets. Using our framework, we provide … Read more