Locating Restricted Facilities on Binary Maps

In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting … Read more

Inferring Company Structure from Limited Available Information

In this paper we present several algorithmic techniques for inferring the structure of a company when only a limited amount of information is available. We consider problems with two types of inputs: the number of pairs of employees with a given property and restricted information about the hierarchical structure of the company. We provide dynamic … Read more

Minimum Dissatisfaction Personnel Scheduling

In this paper we consider two problems regarding the scheduling of available personnel in order to perform a given quantity of work, which can be arbitrarily decomposed into a sequence of activities. We are interested in schedules which minimize the overall dissatisfaction, where each employee’s dissatisfaction is modeled as a time-dependent linear function. For the … Read more

Optimal Scheduling of File Transfers with Divisible Sizes on Multiple Disjoint Paths

In this paper I investigate several offline and online data transfer scheduling problems and propose efficient algorithms and techniques for addressing them. In the offline case, I present a novel, heuristic, algorithm for scheduling files with divisible sizes on multiple disjoint paths, in order to maximize the total profit (the problem is equivalent to the … Read more

A Dynamic Programming Framework for Combinatorial Optimization Problems on Graphs with Bounded Pathwidth

In this paper we present an algorithmic framework for solving a class of combinatorial optimization problems on graphs with bounded pathwidth. The problems are NP-hard in general, but solvable in linear time on this type of graphs. The problems are relevant for assessing network reliability and improving the network’s performance and fault tolerance. The main … Read more

Information Relaxations and Duality in Stochastic Dynamic Programs

We describe a dual approach to stochastic dynamic programming: we relax the constraint that the chosen policy must be temporally feasible and impose a penalty that punishes violations of temporal feasibility. We describe the theory underlying this dual approach and demonstrate its use in dynamic programming models related to inventory control, option pricing, and oil … Read more

Simultaneous Solution of Lagrangean Dual Problems Interleaved with Preprocessing for the Weight Constrained Shortest Path Problem

Conventional Lagrangean preprocessing for the network Weight Constrained Shortest Path Problem (WCSPP calculates lower bounds on the cost of using each node and edge in a feasible path using a single optimal Lagrange multiplier for the relaxation of the WCSPP. These lower bounds are used in conjunction with an upper bound to eliminate nodes and … Read more

A Q-Learning Algorithm with Continuous State Space

We study in this paper a Markov Decision Problem (MDP) with continuous state space and discrete decision variables. We propose an extension of the Q-learning algorithm introduced to solve this problem by Watkins in 1989 for completely discrete MDPs. Our algorithm relies on stochastic approximation and functional estimation, and uses kernels to locally update the … Read more

Nonserial dynamic programming and local decomposition algorithms in discrete programming

One of perspective ways to exploit sparsity in the dependency graph of an optimization problem as J.N. Hooker stressed is nonserial dynamic programming (NSDP) which allows to compute solution in stages, each of them uses results from previous stages. The class of discrete optimization problems with the block-tree-structure matrix of constraints is considered. Nonserial dynamic … Read more

New solution approaches to the general single machine earliness-tardiness problem

This paper addresses the general single-machine earliness-tardiness problem with distinct release dates, due dates, and unit costs. The aim of this research is to obtain an exact nonpreemptive solution in which machine idle time is allowed. In a hybrid approach, we formulate and then solve the problem using dynamic programming (DP) while incorporating techniques from … Read more