On cone based decompositions of proper Pareto optimality

In recent years, the research focus in multi-objective optimization has shifted from approximating the Pareto optimal front in its entirety to identifying solutions that are well-balanced among their objectives. Proper Pareto optimality is an established concept for eliminating Pareto optimal solutions that exhibit unbounded tradeo ffs. Imposing a strict tradeo ff bound allows specifying how many units … Read more

The proximal point method for locally Lipschitz functions in multiobjective optimization

This paper studies the constrained multiobjective optimization problem of finding Pareto critical points of vector-valued functions. The proximal point method considered by Bonnel et al. (SIAM J. Optim., 4 (2005), pp. 953-970) is extended to locally Lipschitz functions in the finite dimensional multiobjective setting. To this end, a new approach for convergence analysis of the … Read more

SCORE Allocations for Bi-objective Ranking and Selection

The bi-objective R&S problem is a special case of the multi-objective simulation optimization problem in which two conflicting objectives are known only through dependent Monte Carlo estimators, the decision space or number of systems is finite, and each system can be sampled to some extent. The solution to the bi-objective R&S problem is a set … Read more

The complexity of simple models – a study of worst and typical hard cases for the Standard Quadratic Optimization Problem

In a Standard Quadratic Optimization Problem (StQP), a possibly indefinite quadratic form (the simplest nonlinear function) is extremized over the standard simplex, the simplest polytope. Despite this simplicity, the nonconvex instances of this problem class allow for remarkably rich patterns of coexisting local solutions, which are closely related to practical difficulties in solving StQPs globally. … Read more

Disjunctive Programming for Multiobjective Discrete Optimisation

In this paper, I view and present the multiobjective discrete optimisation problem as a particular case of disjunctive programming where one seeks to identify efficient solutions from within a disjunction formed by a set of systems. The proposed approach lends itself to a simple yet effective iterative algorithm that is able to yield the set … Read more

Stochastic Dual Dynamic Integer Programming

Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, such as nested Benders’ decomposition and … Read more

MIDAS: A Mixed Integer Dynamic Approximation Scheme

Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm for solving finite-horizon stochastic dynamic programs with monotonic Bellman functions. MIDAS approximates these value functions using step functions, leading to stage problems that are mixed integer programs. We provide a general description of MIDAS, and prove its almost-sure convergence to an epsilon-optimal policy when … Read more

A Polyhedral Approach to Online Bipartite Matching

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately be matched or discarded. We consider various … Read more

Bi-objective branch–and–cut algorithms: Applications to the single source capacitated facility location problem

Most real–world optimization problems are of a multi–objective nature, involving objectives which are conflicting and incomparable. Solving a multi–objective optimization problem requires a method which can generate the set of rational compromises between the objectives. In this paper, we propose two distinct bound set based branch–and–cut algorithms for bi–objective combinatorial optimization problems, based on implicitly … Read more

On Sampling Rates in Simulation-Based Recursions

We consider the context of “simulation-based recursions,” that is, recursions that involve quantities needing to be estimated using a stochastic simulation. Examples include stochastic adaptations of fixed-point and gradient descent recursions obtained by replacing function and derivative values appearing within the recursion by their Monte Carlo counterparts. The primary motivating settings are Simulation Optimization and … Read more