Screening with Limited Information: A Dual Perspective and A Geometric Approach

Consider a seller seeking a selling mechanism to maximize the worst-case revenue obtained from a buyer whose valuation distribution lies in a certain ambiguity set. For a generic convex ambiguity set, we show via the minimax theorem that strong duality holds between the problem of finding the optimal robust mechanism and a minimax pricing problem … Read more

Adjustability in Robust Linear Optimization

We investigate the concept of adjustability — the difference in objective values between two types of dynamic robust optimization formulations: one where (static) decisions are made before uncertainty realization, and one where uncertainty is resolved before (adjustable) decisions. This difference reflects the value of information and decision timing in optimization under uncertainty, and is related … Read more

Robust CARA Optimization

We propose robust optimization models and their tractable approximations that cater for ambiguity-averse decision makers whose underlying risk preferences are consistent with constant absolute risk aversion (CARA). Specifically, we focus on maximizing the worst-case expected exponential utility where the underlying uncertainty is generated from a set of stochastically independent factors with ambiguous marginals. To obtain … Read more

Adjustable robust optimization with objective uncertainty

In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and … Read more

Sinkhorn Distributionally Robust Optimization

We study distributionally robust optimization with Sinkhorn distance—a variant of Wasserstein distance based on entropic regularization. We derive a convex programming dual reformulation for general nominal distributions, transport costs, and loss functions. To solve the dual reformulation, we develop a stochastic mirror descent algorithm with biased subgradient estimators and derive its computational complexity guarantees. Finally, … Read more

Effective Scenarios in Multistage Distributionally Robust Optimization with a Focus on Total Variation Distance

We study multistage distributionally robust optimization (DRO) to hedge against ambiguity in quantifying the underlying uncertainty of a problem. Recognizing that not all the realizations and scenario paths might have an “effect” on the optimal value, we investigate the question of how to define and identify critical scenarios for nested multistage DRO problems. Our analysis … Read more

Data-Driven Distributionally Preference Robust Optimization Models Based on Random Utility Representation in Multi-Attribute Decision Making

Preference robust optimization (PRO) has recently been studied to deal with utility based decision making problems under ambiguity in the characterization of the decision maker’s (DM) preference. In this paper, we propose a novel PRO modeling paradigm which combines the stochastic utility theory with distributionally robust optimization technique. Based on the stochastic utility theory, our … Read more

Pareto Robust Optimization on Euclidean Vector Spaces

Pareto efficiency for robust linear programs was introduced by Iancu and Trichakis. We generalize their approach and theoretical results to robust optimization problems in Euclidean spaces with affine uncertainty. Additionally, we demonstrate the value of this approach in an exemplary manner in the area of robust semidefinite programming (SDP). In particular, we prove that computing … Read more

Appointment Scheduling for Medical Diagnostic Centers considering Time-sensitive Pharmaceuticals: A Dynamic Robust Optimization Approach

This paper studies optimal criteria for the appointment scheduling of outpatients in a medical imaging center. The main goal of this study is to coordinate the assignments of radiopharmaceuticals and the scheduling of outpatients on imaging scanners. We study a special case of a molecular imaging center that offers services for various diagnostic procedures for … Read more

Exact and Approximate Schemes for Robust Optimization Problems with Decision Dependent Information Discovery

Uncertain optimization problems with decision dependent information discovery allow the decision maker to control the timing of information discovery, in contrast to the classic multistage setting where uncertain parameters are revealed sequentially based on a prescribed filtration. This problem class is useful in a wide range of applications, however, its assimilation is partly limited by … Read more